School of Basic and Applied Sciences Central University of Punjab, Bathinda

M.Sc. Program in Life Sciences Specialization: Biochemistry 2018-19

School of Basic and Applied Sciences Central University of Punjab, Bathinda

Vision Statement

The department strives to synergize the study of biochemistry with health disparities research through innovation and collaboration and to provide the highest quality of translational biomedical research, education, and service. The curriculum for M.Sc. Life Sciences program with a specialization in biochemistry of the department is designed to train the students in the diverse branches of biochemistry. The department will also promote R&D activities in the emerging areas of biochemistry. The department is involved in the community service and awareness programs related to medical biochemistry and microbiology.

Mission of the Programme

The programme is committed to provide outstanding teaching in the biochemical sciences and to conduct quality research of international repute. The mission of the department is to train competent professional biochemists with the knowledge, skills and values required to address the need for high-level manpower in the country. The tranined students will further carry out creative, innovative and inventive research, and provide reliable services to the community.

Goals:

- Provide high-quality academic programmes in biochemistry.
- Provide graduates with a sound knowledge of the fundamental principles and practice of biochemistry.
- Recruit high quality students.
- Develop and maintain laboratories with state-of-the-art equipment.
- Conduct community service by offering special training programmes, awareness camps and community development.

School of Basic and Applied Sciences Central University of Punjab, Bathinda

M.Sc. Program in Life Sciences (Specialization: Biochemistry)

	Semester – I				
Course Code	Course Title	L (hr)	T (hr)	P (hr)	Cr
	Compulsory Foundation				
LMS.513	Research Methodology and Biostatistics	3	1	-	4
	Core				
LBC.506	Biochemistry	3	-	-	3
LMS.507	Microbiology	3	-	-	3
LMS.508	Cell Biology	3	-	-	3
LBC.509	Essentials of Genetics	3	-	-	3
LBC.510	Life Sciences Practical-I (Practical)	-	-	10	5
	Interdisciplinary Course (IDC)				
LBC.512	Basics of Biochemistry (IDC)	2	-	-	2
	Total Credits				23

L: Lectures; T: Tutorial; P: Practical; Cr: Credits

Instructional Designs/ Mode of classroom Transaction:

- 1) Lecture
- 2) Demonstration
- 3) Lecture cum demonstration
- 4) Experimentation
- 5) Self-learning
- 6) Group discussion

Semester I – 23 credits Semester II – 23 credits Semester III – 23 credits Semester IV – 22 credits

Total – 91 credits

School of Basic and Applied Sciences Central University of Punjab, Bathinda

Foundation Courses

LMS.513: Research Methodology and Biostatistics

Learning Objective: To ensure that the student understands various aspects of research methods, ethics, technical and scientific writings and literature search. This course will also help the students to understand the complex outcome of their results using biostatistical approaches in testing hypothesis, designing experiments, analyzing experimental data and interpreting the results.

Unit	Syllabus	Lectures
1.	General Principles of Research: Meaning and importance of research,	15
	critical thinking, formulating hypothesis and development of research plan,	
	review of literature, interpretation of results and discussion. Scientific writing:	
	writing synopsis, research manuscript and dissertation. Literature search and	
	survey, e-Library, web-based literature search engines. Research	
	presentation and poster preparation.	
2.	Bioethics and Biosafety: Good Laboratory Practices, Sterilization	15
	techniques, Cell and tissue culture techniques: Plants and animals.	
	Biosafety for human health and environment. Biosafety issues for using	
	cloned genes in medicine, agriculture, industry, and ecoprotection.	
	Genetic pollution, Risk and safety assessment from genetically	
	engineered organisms. Ethical theories, Ethical considerations during	
	research, Ethical issues related to animal testing and human project.	
	Intellectual property rights (IPRs), Patents copyrights and Fair use,	
	plagiarism and open access publishing.	
3.	Overview of Biostatistics: Differences between parametric and non-	15
	parametric statistics, Univariant and multivariant analysis. Frequency	
	distribution. Mean, Median, Mode, Probability Distribution, Standard	
	deviation, Variation, Standard error, significance testing and levels of	
	significance, Hypothesis testing. Measures of central tendency and dispersal,	
	Histograms, Probability distributions (Binomial, Poisson and Normal),	
	Sampling distribution, Kurtosis and Skewness.	
4.	Interential Statistics: Student's t-test, Paired t-test, Mann-Whitney U-test,	15
	Wilcoxon signed-rank, One-way and two-way analysis of variance (ANOVA),	
	Critical difference (CD), Least Significant Difference (LSD), Kruskal–Wallis	
	one-way ANOVA by ranks, Friedman two-way ANOVA by ranks, x ² test.	
0	Standard errors of regression coefficients and types of correlation coefficient.	
Sug	gested Reading:	
	Supla, S. (2005). Research Methodology and Statistical Techniques. Deep & Deep)
	Constanti C. R. (2008) Research Methodology (a) New Age Internetional (a) Limited	l Now Dolbi
2. r	Contain, C.R. (2006). Research Methodology (S). New Age International (P) Limited	h. New Dellill.
	Society for Microhiology USA	
	Pockman H B (2004) Intellectual Property Law for Engineers and Scientists Wil	
- . r	JSA.	Cy-ILLL F1633,

School of Basic and Applied Sciences Central University of Punjab, Bathinda

- 5. Shannon, T. A. (2009). An Introduction to Bioethics. Paulist Press, USA.
- 6. Vaughn, L. (2009). Bioethics: Principles, Issues, and Cases. Oxford University Press, UK.
- 7. WHO (2005). Laboratory Biosafety Manual. World Health Organization.
- 8. Norman, G. and Streiner, D. (2008). *Biostatistics: The Bare Essentials*, Decker Inc. USA, 3rd edition.
- 9. Myra L. Samuels, Jeff Witmer, Andrew Schaffner (2003). *Statistics for the Life Sciences*. Prentice Hall publishers, 4th edition
- 10. Sokal, R.R. and Rohlf, F.J. (1994). *Biometry: The Principles and Practices of Statistics in Biological Research.* W.H. Freeman publishers. 3rd edition.
- 11. Emden, H.V. (2008). Statistics for Terrified Biologists. Blackwell publishers

Core Courses

LBC.506: Biochemistry

Learning Objective: The course is designed to teach fundamental and basics of biochemistry and to prepare them for advanced courses in biochemistry.

Unit	Syllabus	Lectures
	Principles of Biophysical Chemistry: pH, Water, Buffer, Reaction kinetics, Laws	12
1.	of Thermodynamics, Colligative properties, Structure of atoms, Molecules and	
	chemical bonds.	
	Composition, Structure and Function of Biomacromolecules: Carbohydrates,	
	Lipids, Proteins, and Nucleic acids. Primary, Secondary, Tertiary and Quaternary	
	structures of proteins, Domains, Motifs and Folds, Stability of protein.	
	Techniques: Chromatography: Thin layer chromatography (TLC), gel filtration, ion	
	exchange and affinity chromatography, GC, HPLC and LC-MS Spectrometry:	
	Circular Dichroism, Nuclear Magnetic Resonance and atomic absorption	
	spectroscopy.	
2.	Enzymology: Enzyme classification, Principles of catalysis, Mechanism of enzyme	12
	catalysis, Enzyme kinetics, Michaelis-Menten equation and Lineweaver Burk plots,	
	Enzyme regulation, Isozymes and Clinically important enzymes.	
3.	Carbohydrate and Lipid Metabolism: Carbohydrate metabolism: Glycolysis,	12
	Kreb's Cycle, Electron transport chain, Pentose phosphate pathway,	
	Gluconeogenesis, Glycogen metabolism; Lipid Metabolism: Fatty acid catabolism,	
	Lipid biosynthesis.	
4.	Amino Acid and Nucleic Acid Metabolism: Amino acid biosynthesis and catabolic	12
	pathways; Nucleotide synthesis and degradation pathways.	
Sugg	ested Reading:	
1.	Berg, J.M., Tymoczko, J.L., Gatto, Jr., G.J., and Stryer, L. (2015). Biochemistry, 8	th Edition,
	W.H. Freeman.	
2.	Nelson, D. and Cox, M.M. (2017). Lehninger Principles of Biochemistry, 7th Edit	tion, W.H.
	Freeman.	
3.	Garrett, RH, Grisham, CM. (2012). Biochemistry, 5th Edition, Cengage Learning.	
4.	McKee, T and McKee, JR. (2015). Biochemistry: The Molecular Basis of Life, 6	th Edition,

School of Basic and Applied Sciences Central University of Punjab, Bathinda

Oxford University Press

LMS.507: Microbiology

Learning Objective: Students will learn the basics of microbes, microbial growth, their application in day to day life and beneficial versus harmful micro-organisms.

Unit	Syllabus	Lectures
1.	 Microbial Systematics: Major characteristics used in taxonomy – morphological, physiological and metabolic, genetic and molecular taxonomy. Classification of bacteria and Archaea according to the Bergey's Manual of Systematic Bacteriology and their economic significance. Introduction to Microbiology: Scope and history of Microbiology, Cell structure, different components, function and their significance for bacteria and archaea. 	12
	Algae, and viruses.	10
2.	Growth, Nutrition & Control: Phases in bacterial growth, Growth Curve, Calculation of G-time, Physical and environmental requirements of growth, Microbial nutrient requirements – macro-nutrients, micro-elements – growth factors - sources of nutrients – nutritional classification of bacteria - Phototroph, Chemotroph, Autotroph (lithotroph), Heterotroph (organotroph), Photoautotroph, Photoheterotroph, Chemoautotroph, Chemoheterotroph - Nutritional patterns of pathogens – Saprophytes – Auxotroph	12
3.	 Fungal Systematics and Diversity: General features of fungi- cell structure; growth, environmental conditions for growth; nutrition and life cycle patterns, Endophytic fungi as latent pathogens and biocontrol agents. Economic importance of fungi and yeast. General Virology: Morphology, viral genome – types and structures; nomenclature and classification of virus (Animal, plant, bacterial viruses). Life cycle and replication of animal viruses, Introduction to some emerging viral diseases. 	12
4.	Algae: Classification; reproduction and life cycles; algal toxins, algal bloom, algae as a source of antibiotics, importance of algae in production of algal pigments and biofuels. Protozoa: General account, structure, reproduction and classification of protozoa.	12
	Introduction to important protozoan diseases.	
Sugge	estea Keaaing: Roumon D.W. (2011) Microbiology, with Discosso by Dody System Devices in	
1.	USA.	Jummings,
2.	Capuccino, J.G. and Sherman, N. (2004). <i>Microbiology-A Laboratory Manual</i> . Cummings, USA.	Benjamin
3.	Pelczar, M. J., Chan, E.C.S. and Krieg, N.R. (2001). <i>Microbiology: Concepts and A</i> McGraw-Hill Inc. USA.	oplications.
4.	Pommerville, J.C. (2010). <i>Alcamo's Fundamentals of Microbiology</i> . Jones Publishers, USA.	& Bartlett
5.	Prescott, L.M., Harley, J.P. and Klein, D.A. (2005). Microbiology. McGraw-Hill Science	ж, USA.
6.	<i>Experiments In Microbiology, Plant Pathology and Biotechnology</i> . 4th Edition (2010) Intl. Publishers Ltd New Delhi	. New Age
Additi	onal Reading:	
7.	Strelkauskas, A., Strelkauskas, J. and Moszyk-Strelkauskas, D. (2009). <i>Micro Clinical Approach.</i> Garland Science, New York, USA.	biology: A

School of Basic and Applied Sciences Central University of Punjab, Bathinda

8.	Tortora, G.J., Funke,	B.R. a	and Case,	C.L.	(2009).	Microbiology:	An	Introduction.	Benjamin
	Cummings, USA								

LMS.508: Cell Biology

Learning Objective: Students will understand the structure and basic components of prokaryotic and eukaryotic cells, especially macromolecules, membranes, and organelles and their related functions.

Unit	Syllabus	Lectures
1.	Introduction to the Cell: Evolution of the cell, From molecules to first cell, From	12
	prokaryotes to eukaryotes, Prokaryotic and eukaryotic genomes and single cell to	
	multicellular organisms.	
	Membrane Structure and Function: Models of membrane structure, Membrane	
	proteins, Membrane carbohydrates, Membrane transport of small molecules,	
	Membrane transport of macromolecules and particles.	
	Techniques: Types of Microscopy (phase contrast, fluorescent, electron	
	microscopy (SEM/TEM), Scanning-probe, Atomic force and, Confocal microscopy.	
	Centrifugation: Principle and applications and types (Differential, Density Gradient,	
	Iso-density centrifugation)	
2.	Structural Organization and Function of Intracellular Organelles: Structure	12
	and function of nucleus, Ribosomes, lysosomes, peroxisomes, Golgi apparatus,	
	endoplasmic reticulum, mitochondria and chloroplast. Oxidation of glucose and	
	fatty acids, Electron transport oxidative phosphorylation, and photosynthesis.	
	Protein Secretion and Sorting: Organelle biogenesis and protein secretion,	
	synthesis and targeting. Intracellular traffic, vesicular traffic in the secretary	
	pathway, protein sorting in the Golgi bodies, traffic in the endocytic pathway,	
	exocytosis.	
3.	The Cytoskeleton: The nature of cytoskeleton, Intermediate filaments,	12
	Microtubules, Actin filaments, Cilia and centrioles, Organization of the	
	cytoskeleton. Cell communication and cell signaling: Cell adhesions, Cell	
	junctions and the extra cellular matrix, Cell-cell adhesion and communication, Cell	
	matrix adhesion, Collagen the fibrous protein of the matrix, Noncollagen	
	component of the extra cellular matrix.	
4.	Cell Growth and Division: Overview of the cell cycle and its control, The	12
	molecular mechanisms for regulating mitotic and meiotic events, Amitosis, Cell	
	cycle control, Checkpoints in cell cycle regulation. Cell to cell signaling, Overview	
	of the extra cellular signaling, Identification of cell surface receptors, G-protein	
	coupled receptors and their effectors, Second messengers, Enzyme-linked cell	
	surface receptors, Interaction and regulation of signaling pathways.	
Sugge	sted Reading:	
1. Alb	erts, B., Bray, D., Lews, J., Raff, M., Roberts, K. and Watson, J.D. (2010). <i>Molecular E</i>	<i>Siology of</i>
the	Cell. Garland publishers, Oxford.	
2. Cel	is, J.E. (2006). Cell biology: A laboratory handbook, Vol 1, 2, 3. Academic Press, UK.	

3. Gupta, P.K. (2008). Cytology, Genetics and Evolution. Rastogi publications, Meerut, India.

School of Basic and Applied Sciences Central University of Punjab, Bathinda

- 4. Karp, G. (2010). *Cell and Molecular Biology: Concepts and Experiments*. John Wiley &Sons. Inc. New Delhi, India.
- 5. De Robertis, E.D.P. and De Robertis, E.M.F. (2006). *Cell and Molecular Biology*. VIII Edition. Lippincott Williams and Wilkins, Philadelphia.
- 6. Lodish H, Berk A, Kaiser CA, Krieger A, Scott MP, et al. (2012). *Molecular Cell Biology*, W. H. Freeman; USA

LBC.509: Essentials of Genetics

Learning Objective: Students will learn the basic principles of inheritance at the molecular, cellular and organismal levels.

Unit	Syllabus	Lectures
	Mendelian Principles: Dominance, segregation, independent assortment, Allele,	12
1.	multiple alleles, pseudoallele, complementation tests	
	Extensions of Mendelian Principles: Codominance, incomplete dominance, gene	
	interactions, pleiotropy, genomic imprinting, penetrance and expressivity,	
	phenocopy, linkage and crossing over, sex linkage, sex limited and sex influenced	
	characters.	
	Extra-Chromosomal Inheritance: Chloroplast and Mitochondrial inheritance;	
	Cytoplasmic inheritance (Coiling in Snails).	
2.	Gene Mapping Methods: Molecular markers: RAPD, RFLP, SSR, SNP, ISSR, and	12
	SCAR; Linkage maps, tetrad analysis in Neurospora, mapping with molecular	
	markers, development of mapping population in plants	
	Human Genetics: Pedigree analysis, LOD score for linkage testing, karyotypes,	
	genetic disorders	
	Quantitative Genetics: Polygenic inheritance, heritability and its measurements,	
	QTL mapping	
3.	Mutation: Types, causes and detection, mutant types – lethal, conditional,	12
	biochemical, loss of function, gain of function, germinal verses somatic mutants,	
	insertional mutagenesis, applications in reverse and forward Genetics; Structural	
	and numerical alterations of chromosomes: Deletion, duplication, inversion,	
	translocation, ploidy and their genetic implications; Hardy Weinberg equilibrium.	
	Molecular basis of spontaneous and induced mutations.	
	Recombination: Site-specific, homologous, DNA transposition, retrotransposition	
4	and non-homologous end joining (NHEJ).	40
4.	MICrobial Genetics : Microbes as tools for genetic studies. Organization of genetic	12
	material in bacteria; and viruses, Gene transfer mechanisms, F plasmid; Lambda	
	phage: structure, genetic makeup and life cycle (lytic and lysogeny); Natural	
	transformation and competence; Molecular basis of natural transformation – DNA	
	uptake competence systems in gram positive and gram negative bacteria. Bacterial	
	Transduction Constrained and appendiced transduction with the such and	
	ransouction- Generalized and specialized transouction, virus life cycle and	
Cuerca		
Sugge	estea keaaing:	

School of Basic and Applied Sciences Central University of Punjab, Bathinda

- 1. Snusted, D.P., Simmons, M. J. (2012). *Principles of Genetics*. 6th Edition, John Wiley & Sons, New York.
- 2. Raven P, Johnson GB, Mason KA, Losos JB, Singer SS (2014). *Biology*, 10th Edition, McGraw-Hill, USA.
- 3. Griffiths AJF, Wessler SR, Carroll SB, Doebley J (2015). *An introduction to Genetic Analysis*. 11th Edition W.H. Freeman publication, USA.
- 4. Larry Snyder, Larry Snyder, Joseph E. Peters, Tina M. Henkin, Wendy Champness (2013) *Molecular Genetics of Bacteria*, 4th edition; ASM Press.
- 5. Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R. (2014). *Molecular Biology of the Gene*. 7th Edition, Benjamin Cummings, USA.

LBC.510: Life Sciences Practical-I (Practical)

Learning Objective: In this course the students will observe and will be given hands on training for the practicals pertaining to theory courses of biochemistry, microbiology, cell biology & genetics.

Part A. Biochemistry

- 1. Introduction to Good Laboratory Practices
- 2. Preparation of solutions, buffers, pH setting etc.
- 2. Quantitative estimation of proteins, sugars, total lipids and amino acids.
- 3. Isolation of protein from biological sample
- 4. Enzyme activity assays: invertase, amylase, alkaline phosphatase
- 5. Quantitative estimation of phenolic compounds.

Part B. Microbiology

1. Use of Microscope and working in a biosafety cabinet; Preparation of growth media: Liquid and Solid media

- 2. Microbiological techniques for isolation of pure cultures: Streak Plate, Spread Plate and Pour Plate techniques
- 3. Staining of bacterial cultures: Simple staining, Negative Staining, Gram Staining, Acid-Fast stain.
- 4. Glucose uptake by E. coli / Saccharomyces cerevisiae (Active and Passive diffusion)

5. Effect of UV, gamma radiations, pH, disinfectants, chemicals and heavy metal ions on microorganisms.

6. Preparation of microbiological media. Autotrophic media, minimal media, basic media, enriched media, enrichment media, differential media.

Microbial growth studies.

- 7. Isolation of bacterial cultures from different sources (soil, air, water) and determination of CFU.
- 8. Testing of Antibiotic sensitivity/resistance
- 9. Use of selective and/or differential media for isolation and identification of specific bacterial cultures
- 10. Biochemical tests to characterize bacterial cultures: Catalase test, Oxidase test, Methylene blue test

School of Basic and Applied Sciences Central University of Punjab, Bathinda

Part C. Cell Biology

- 1. Temporary staining for epithelial cells and blood cells.
- 2. Cell count using haemocytometer
- 3. Preparations of temporary mount and study the different stages of Mitosis (Onion root tip).
- 4. Study of polyploidy in onion root tip by colchicine treatment.
- 5. Study of structure of cell organelles through electron micrographs
- 6. To demonstrate the presence of mitochondria and other cell organelles using vital stains
- 7. Depicting nature of cellular membranes: Osmosis, Hypertonicity, Hypotonicity, Isotonicity
- 8. Preparation of cell culture media

Part D. Genetics

- 1. Learning Blood group typing with its genetic basis.
- 2. Identification of inactivated X chromosome as Barr body and drumstick
- 3. To demonstrate and understand the principle of Hardy-Weinberg equilibrium. Calculation of genotypic and allelic frequencies for a specific trait in a random sample
- 4. Techniques for screening and isolation of bacterial cultures with specific phenotypic/genotypic characteristics.
- 5. Differentiating genetic variants (species/strains) using RFLP
- 6. Studying *Drosophila melanogaster* as a Model organism: Identification of normal and mutant flies

(Drosophila melanogaster), Demonstration of Drosophila polytene chromosomes

• Practical may be added/modified from time to time depending on available faculties/facilities.

Interdisciplinary Course

LBC.512: Basics of Biochemistry (IDC)

Learning Objective: This is an interdisciplinary course to acquaint the students of different streams with a very basic knowledge and understanding of biomolecules, their structure, composition and function.

Unit	Syllabus	Lectures
	Principles of Biophysical Chemistry: pH, Buffer, Reaction kinetics,	7
1.	Thermodynamics.	
	Composition, Structure and Function of Biomolecules: Carbohydrates, Lipids,	
	Proteins: Primary, Secondary, Tertiary and Quaternary structures, Nucleic acids	
	and Vitamins.	
2.	Carbohydrate and Protein Metabolism: Carbohydrate metabolism; Glycolysis,	
	Kreb's Cycle, Hexose monophosphate shunt pathway, Glycogenolysis,	8
	Glycogenesis. Protein metabolism, Urea Cycle.	
3.	Fatty acid and Nucleic Acid Metabolism: Fatty acid catabolism and synthesis;	
	Degradation and synthesis of nucleotides.	8
4.	Enzymology: Classification of enzymes, Principles of catalysis, Mechanism of	7
	enzyme catalysis, Effect of pH and temperature on enzyme activity, Application of	
	enzymes in day to day life. Isozymes.	
Sugge	sted Reading:	
1.	Satyanarayana, U. (2013) Biochemistry, Publisher: Elsevier; Fourth editi	on ISBN-
	9788131236017.	

School of Basic and Applied Sciences Central University of Punjab, Bathinda

- 2. Berg, J.M., Tymoczko, J.L. and Stryer, L. (2010). *Biochemistry.* W.H. Freeman & Company. USA.
- 3. Nelson, D. and Cox, M.M. (2008). *Lehninger Principles of Biochemistry*. BI publications Pvt. Ltd. Chennai, India.

Additional Reading:

1. Karp, G. (2010). *Cell and Molecular Biology: Concepts and Experiments*. John Wiley & Sons. Inc. New Delhi, India.

School of Basic and Applied Sciences Central University of Punjab, Bathinda

Course Code	Course Title	L (hr)	T (hr)	P (hr)	Cr
	Compulsory Foundation				
CST.501	Computer Applications/MOOCs	2	-	-	2
CST.502	Computer Applications Lab	-	-	4	2
	Elective Foundation				
XXX	Choose from value based courses/ MOOCs	1	-	-	1
	Core				
LMS.521	Immunology	3	-	-	3
LBC.522	Molecular Biology	3	-	-	3
LBC.524	Enzymology and Enzyme Technology	3	-	-	3
LBC.525	Metabolism-I	3	-	-	3
LBC.526	Biochemistry Practical-I (Practical)	-	-	2	1
LBC.527	Life Sciences Practical-II (Practical)	-	-	6	3
	Interdisciplinary Course (IDC)				
LMS.529	Basics of Microbiology (IDC)	2	-	-	2
	Total Credits				23

L: Lectures; T: Tutorial; P: Practical; Cr: Credits

Instructional Designs/ Mode of classroom Transaction:

- 1) Lecture
- 2) Demonstration
- 3) Lecture cum demonstration
- 4) Brain storming
- 5) Problem solving
- 6) Experimentation

School of Basic and Applied Sciences Central University of Punjab, Bathinda

Compulsory Foundation

13.pdf

CST.501: Computer Applications

Learning Objective: Upon successful completion of this course, the student will be able to: 1. Use different operating system and their tools easily. 2. Use word processing software, presentation software, spreadsheet software and latex. 3. Understand networking and internet concepts. 4. Use computers in every field like teaching, industry and research. Unit **Syllabus** Lectures Computer Fundamentals: Introduction to Computer, Input devices, 8 1. Output Devices, Memory (Primary and Secondary), Concept of Hardware and Software, C.P.U., System bus, Motherboard, Ports and Interfaces, Expansion Cards, Ribbon Cables, Memory Chips, Processors, Software: Types of Software, Operating System, User Interface of popular Operating System, Introduction to programming language, Types of Computer. 2. Computer Network: Introduction to Computer Network, Types of 7 Network: LAN, WAN and MAN, Topologies of Network, Internet concept, WWW. Word Processing using MS Word: Text creation and Manipulation; Table handling; Spell check, Hyper-linking, Creating Table of Contents and table of figures, Creating and tracking comments, language setting and thesaurus, Header and Footer, Mail Merge, Different views, Creating equations, Page setting, Printing, Shortcut keys. 3. **Presentation Tool:** Creating Presentations, Presentation views, Working 8 on Slide Transition, Making Notes Pages and Handouts, Drawing and Working with Objects, Using Animations, Running and Controlling a Slide Show, Printing Presentations, Shortcut keys. Spread Sheet: Entering and editing data in cell, Basic formulas and functions, deleting or inserting cells, deleting or inserting rows and columns, printing of Spread Sheet, Shortcut keys. Use of Computers in Education and Research: Data analysis tools, e-7 4. Library, Search engines related to research, Research paper editing tools like Latex. Suggested Reading: 1. Sinha, P.K. Computer Fundamentals. BPB Publications. 2. Goel, A., Ray, S. K. 2012. Computers: Basics and Applications. Pearson Education India. 3. Microsoft Office Professional 2013 Step by Step https://ptgmedia.pearsoncmg.com/images/9780735669413/samplepages/97807356694

School of Basic and Applied Sciences Central University of Punjab, Bathinda

CST.502: Computer Applications Lab

Lab assignments will be given to students based on the theory course, CST.501.

Core Courses

LMS.521: Immunology

Learning Objective: The objective of this course is to instill awareness on basics of immune system where students will learn the components of immunity and various immune responses that work together to protect the host.

Unit	Syllabus	Lectures
1.	 Immune System: Overview of immune system; cells and organs of immune systems; innate and recognition of self and non-self. Nature of antigen. Components of acquired immunity. Humoral immunity and cell mediated immunity. Immunoglobulins, basic structure, classes and subclasses, structural and functional relationships. Molecular Mechanisms of Antibody Diversity and Cellular Immunity: Organization of genes coding for constant and variable regions of heavy chains and light chains, antibody diversity & class switching. Complement System: Complement components, their structure and functions and mechanisms of complement activation by classical, alternative and lectin pathway. 	12
2.	Functions of Acquired Immunity: Types and characterstics of Lymphocytes, cytokines, chemokines, interferons, interleukins, antigen recognition-membrane receptors for antigens. Structure and functions of Major Histocompatibility Complex (MHC) and Human Leukocyte Antigen (HLA) system, polymorphism, distribution variation and function. Association of MHC with disease and superantigen, recognition of antigens by T and B-cells, antigen processing, role of MHC molecules in antigen presentation and co-stimulatory signals.	12
3.	Immunity and Human Diseases: Types of hypersensitivity, features and mechanisms of immediate and delayed hypersensitivity reactions, immunity to microbes, immunity to tumors, AIDS, hepatitis and human immune-deficiencies and allergies. Recent advances in vaccine development for diseases like AIDS, cancer and malaria. Vaccine technology- Role and properties of adjuvants, recombinant DNA and protein based vaccines, plant-based vaccines, reverse vaccinology; peptide vaccines, conjugate vaccines.	12
4. Sugges	Monoclonal Antibodies and Diagnostic Immunology: Immunotoxins production, characterization and applications in diagnosis, therapy and basic research. Antibody genes and antibody engineering- chimeric and hybrid monoclonal antibodies. Methods for immunoglobulin determination-quantitative and qualitative antigen and antibody reactions, agglutination-precipitation, immunocytochemistry, radioimmunoassay (RIA), Enzyme Linked Immunosorbent Assay (ELISA), immunofluorescence, immunoblotting and Flow cytometry.	12
	 Kindt, T.J., Osborne, B.A. and Goldsby, R.A. (2007). <i>Kuby Immunology</i> .7th Edit Freeman, USA. Abbas. (2008). <i>Cellular and Molecular immunology</i>. CBS Publishers & Distributo Charles A and Japaway, J.B. (1994). <i>Immunobiology: The immuno system in</i> 	tion. W.H.

School of Basic and Applied Sciences Central University of Punjab, Bathinda

disease. Blackwell Publishing, USA.

- 4. Delves, P.J., Roitt, I.M. and Seamus, J.M. (2006). *Roitt's essential immunology (Series– Essentials).* Blackwell Publishers, USA.
- 5. Elgert K.D. (2009). *Immunology: Understanding the immune system*. Wiley-Blackwell, USA. Additional reading:
 - 6. Paul, W.E. (1993). Fundamental immunology. Raven Press, SD, USA.
 - 7. Sawhney, S.K. and Randhir, S. (2005). *Introductory practical biochemistry*. Alpha Science International Ltd. New Delhi, India.
 - 8. Tizard (2008). Immunology: An Introduction. Cengage Learning, Thompson, USA.

LBC.522: Molecular Biology

Learning Objective: This course is designed for understanding the molecular processes of DNA replication, transcription, translation, and basic mechanisms of cellular signal transduction and regulation of gene expression.

Unit	Syllabus	Lectures
1.	Structure and Conformation of Nucleic Acids: Structure of DNA, Denaturation and Renaturation, Conformation of nucleic acids (A, B, Z), Organelle DNA Genome organization: Chromosome Structure, Chromatin and its regulation, nucleosome and its assembly, repetitive DNA, interrupted genes, gene shuffling Molecular Techniques and Bioinformatics: Gel electrophoresis, Southern, Northern, Western, hybridization, DNA fingerprinting, cloning, PCR, real-time PCR, DNA sequencing including NGS, microarrays, chromatin immunoprecipitation, metabolomics, proteomics, biological databases and searches, analysis of genomic and proteomic data, DNA-protein interactions, protein-protein interactions, protein sequencing, emerging techniques	12
2.	 DNA Replication and Repair: Prokaryotic and eukaryotic DNA replication, Mechanism of DNA replication, Enzymes and accessory proteins involved in DNA replication, Replication errors, DNA damage and repair, gene editing. Transcription and mRNA Processing: Types of RNA, Prokaryotic &, eukaryotic transcription, general and specific transcription factors, Regulatory elements and mechanisms of transcription regulation, Transcriptional and posttranscriptional gene silencing: Initiation, Elongation & Termination of transcription, Capping, Polyadenylation, Splicing, editing, mRNA stability, RNA interference and microarray analysis, RNA editing 	12
3.	Translation: Genetic code, prokaryotic & eukaryotic translation, the translation machinery, mechanisms of chain initiation, elongation and termination, regulation of translation, co-and post- translational modifications, mode of action of antibiotics	12
4.	Gene Regulation: Prokaryotic – lac, trp, gal and ara operons, lambda gene regulation during lysogeny and lytic cycle; Eukaryotic – yeast, higher eukaryotes, hormonal regulation of genes, epigenetic regulation; Gene network analysis, coexpression; Recent trends.	12
Sugge	sted Reading:	
1. 2.	Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R. (2014). <i>Molecu of the Gene</i> . 7 th Edition, Benjamin Cummings, USA. Krebs, J.E., Goldstein, E.S., Kilpatrick, S.T. (2014). <i>Lewin's Genes XI</i> , Jones	<i>llar Biology</i> & Bartlett
	Learning, USA.	S. Dartiott

School of Basic and Applied Sciences Central University of Punjab, Bathinda

3.	Green, M.R., Sambrook, J. (2012). Molecular cloning: A laboratory manual. Cold Spring Harbor
	Laboratory Press, New York.

LBC.524: Enzymology and Enzyme Technology

Learning Objective: In this course, the students will learn about enzymes, their classification, structure, function and interaction.

Unit	Syllabus	Lectures
	Historical Perspective, Enzyme Classification: Recommendation and Systemic	12
1.	Nomenclature.	
	Enzyme Chemistry: Subcellular Distribution of Enzymes. Isolation and	
	Purification of Enzymes, Criteria for Enzyme homogeneity, General Properties,	
	Enzyme Activity, Specific Activity and Turnover Number, Marker Enzymes.	
2.	Mechanism of Enzyme Action: Enzyme-substrate complementarity,	12
	Stereochemistry of enzyme substrate action, acid base and covalent catalysis,	
	factors associated with catalytic efficiency – orientation, distortion and strain,	
	induced fit hypothesis.	
	Structure and Function of Selected Enzymes: Chemical modification of active-	
	site group, substrate /- driven mutagen etc. Chymotrypsin, Glyceraldehyde-3P-	
	Dehydrogenase, Serine and Cysteine Proteases.	
	Multi Enzyme Complexes: Occurrence, isolation & their properties: Mechanism	
	of action and regulation of pyruvate dehydrogenase & fatty acid synthase	
	complexes. Enzyme-enzyme interaction, multiple forms of enzymes with special	
	reference to lactate dehydrogenase.	
3.	Enzyme Kinetics : Enzyme-Substrate Interaction, ES Complex, Binding Site,	12
	Active Site. Specificity, Steady-State, Pre- Steady State and Equilibrium-	
	State Kinetics, Michael- Menten Equation and its derivation, Graphical Methods	
	For determination of Km, Vmax. Significance.	
	temporature Colligion and transitional state theories. Significance of Activation	
	Energy Mechanism of bisubstrate and multisubstrate reaction. Methods for	
	identifying mechanism	
1	Enzyme Inhibition and Activation: Types of inhibition, and activation. Kinetics of	10
ч.	empetitive non competitive and uncompetitive inhibition. Determination of K	10
	Enzyme Regulation: Allostoric and Hystoric Enzymes, Proonzymes,	
	Zymogens and activation	
	Immobilized Enzymes: Immobilization methods. Kinetics. Industrial applications	
	Various types of enzymatic bioprocesses and Bioreactors used in enzymatic	
	processes	
Suga	ested Reading:	
1.	Palmer, T. (1995) Understanding Enzymes, Fourth edition, Prentice Hall.	
2.	Shukla, AN. (2009) <i>Elements of Enzymology</i> . Discovery Publishing house. New Delh	i.
3	Price, NC, and Stevens, L. (1999) Fundamentals of Enzymology. Third edition. Oxfor	rd
	University Press.	
4.	Stein, RL. (2011) Kinetics of Enzyme Action, Wiley.	

School of Basic and Applied Sciences Central University of Punjab, Bathinda

- 5. Bisswanger, H. (2008) Enzyme Kinetics, Wiley-VCH.
- 6. Marangoni, AG (2003) Enzyme Kinetics, Wiley.
- 7. Yon-Kahn, J and Herve, G. (2010) Molecular and Cellular Enzymology, Springer.
- 8. J.E. Bailey and D.F. Olis. Biochemical Engineering fundamentals 2nd Edition.Mcgraw Hill Publication
- 9. Segel and Irwin H.. Enzyme kinetics, behavior and analysis of rapid equilibrium and steady-state enzyme systems. ACS Publication.

LBC.525: Metabolism-I

Learning Objective: The course will provide insights into bioenergetics, various components of cells essential for energy generation and their biosynthesis.

Cyndddo	Lectures	
1. Bioenergetics – Concept of free energy, standard free energy, determination of AG for a reaction. Relationship between equilibrium constant and standard free	14	
energy change, biological standard state & standard free energy change in		
coupled reactions. Biological oxidation-reduction reactions, redox potentials,		
relation between standard reduction potentials & free energy change. High energy		
phosphate compounds – introduction, phosphate group transfer, free energy of		
hydrolysis of ATP and sugar phosphates along with reasons for high ΔG . Energy		
2 Fundamentals of Biological Membranes - Membrane lipids and proteins.	10	
Membrane receptors, Transport of ion across plasma membrane, Transepithilia	10	
transport of solute and water, Electrical excitability and action potential.		
3. Coenzymes and Cofactors – Role and mechanism of action of NAD+ /NADP+,	10	
FAD, lipoic acid, thiamine pyrophosphate, tetrahydrofolate, biotin, pyridoxal		
phosphate, B12 coenzymes and metal ions with specific examples.		
4. Carbohydrates – Glycolysis, various forms of fermentations in micro-organisms,	14	
citric acid cycle, its function in energy generation and biosynthesis of energy rich		
bond, pentose phosphate pathway and its regulation. Gluconeogenesis,		
glycogenesis and glycogenolysis, glyoxylate and gamma aminobutyrate shunt		
pathways, Cori cycle, anaplerotic reactions, Entner-Doudoroff pathway,		
glucuronate pathway. Carbohydrate metabolism.		
Suggested Reading:		
1. Campbell, MK and Farrell, SO. (2002) Biochemistry, 4th ed. Brooks/Cole Pub Co.		
2. Davidson, VL and Sittman, DB (1999) Biochemistry NMS, 4th ed. Lippincott. Willams and	Wilkins.	
3. Voet, D and Voet JG (2011) Biochemistry, 4 th ed. Wiley	nd	
4. Kuchel, Philip W., et al. (1988) Schaum's outline of theory and problems of biochemistry.	2 nd ed.	
McGraw-Hill.		
5. Rodwell V, Bender D, Botham KM, Kennelly PJ and Weil PA (2015) Harper's Biochemistry. 30th ed.		
McGraw Hill.		
6. Nelson DL and Cox MM (2004) Lehninger's Principles of Biochemistry, 4th ed. WH Freeman.		
7. Berg JM, Tymoczko JL, Stryer L, Gregory J, Jr. Gatto (2010) Biochemistry, WH Freeman, 7 th ed.		
8. Lodish, H, Birk, A, et al. (2012) <i>Molecular Cell Biology</i> . 7th ed. WH Freeman.		
3. Nelson DL and Cox MM (2012) Lehninger's Principles of Biochemistry, 6th ed. WH Freeman.		
10. Filnean JB, Coleman R and Michell RH (1984) Membranes and their cellular functions.		

School of Basic and Applied Sciences Central University of Punjab, Bathinda

Blackwell scientific publishers, Oxford.

- **LBC.526 Biochemistry Practical-I (Practical):** In this course the students will observe and perform experiments related to enzymology and metabolism will enhance their laboratory skills, and scientific knowledge.
- 1. Preparation of Chromic acid for glassware cleaning.
- 2. Prepration of calibration curves.
- 3. Determination of protein by Biuret and Lowry's method.
- 4. Determination of protein by Bradford method.
- 5. Quantitaive estimation of glucose by glucose oxidase method
- 6. Estimation of fructose and glucose in honey
- 7. Isolation of casein from milk and its quantification
- 8. Isolation of gluten, glutelin and gliadin from wheat.
- 9. Enzyme assay for Salivary amylase
 - i.Activity
 - ii.Determination of optimum pH
 - iii.Determination of optimum temperature
 - iv.Determination of Km
 - v.Determination of specific activity
- 10. Acid phosphatase activity in plant tissue
- Practicals may be added/modified from time to time depending on available faculties/facilities.

LBC.527: Life Sciences Practical-II (Practical)

Learning Objective: The students will be learning to design, perform, observe and trouble shoot the practicals pertaining to theory courses of immunology and molecular biology. The advanced techniques used during the practicals will also motivate the students and stimulate their interest in respective fields.

Part A. Immunology

- 1. To perform Total Leukocyte Count of the given blood sample.
- 2. To perform Differential Leukocyte Count of the given blood sample.
- 3. Separation of serum from blood.
- 4. Double immunodiffusion test using specific antibody and antigen.
- 5.To perform immunoelectrophoresis using specific antibody and antigen.
- 6. Dot Immuno blot assay (DIBA).
- 7. ELISA
- 8. Polyacrylamide gel electrophoresis and Western blotting.
- 9. Isolation of mononuclear cells from peripheral blood and viability test by dye exclusion method.
- 10. Growth and maintenance of cell lines.
- 11. Trypsinization method for recovery of cells from monolayer.
- 12. Cytotoxic assay method for a given cell line and testing by trypan blue dye exclusion

School of Basic and Applied Sciences Central University of Punjab, Bathinda

method.

- 13. Demonstration of Flow Cytometry.
- 14. Immunohistochemistry: H & E staining, Fluorescent staining, Fluorescent Microscopy, Confocal Microscopy

Part B. Molecular Biology

- 1. Isolation of genomic DNA
- 2. DNA amplification by Polymerase Chain Reaction (PCR).
- 3. Ligation and E.coli transformation using chemical transformation, plating, colony selection,
- 4. Isolation of plasmid DNA, restriction enzyme digestion and agarose gel electrophoresis.
- 5. Construction of restriction map by single and double digestion, Designing DNA probe,
- Southern blot hybridization (demonstration only).
- 6. RNA isolation from biological samples.
- 7. cDNA synthesis and real time PCR (qPCR).
- 8. DNA sequencing (demonstration only).
- 9. NCBI BLAST search and Primer design.
- 10. Multiple Sequence Alignment and Phylogenetic analysis using MEGA
- 11. Determination of genes mapped within a specific chromosomal locus using GeneLoc
- integration resource and gene orthologue prediction using Ensembl.
- 12. Protein-protein interactions using STRING; Introduction to KEGG and Metacyc databases
- Practical may be added/modified from time to time depending on available faculties/facilities.

Interdisciplinary Course

LMS.529: Basics in Microbiology (IDC)

Learning Objective: Basics in microbiology course is designed as an interdisciplinary course to acquaint the students of different streams with a very basic knowledge and understanding of microbes, pathogens and their control.

Unit	Syllabus	Lecture
1	Introduction to Microbiology: Scope and history of Microbiology,	8
	Classification of Bacteria, Fungi, Protozoa, Algae, and viruses.	
	Basic principles and techniques used in bacterial classification.	
	Phylogenetic and numerical taxonomy. General characteristics, structure	
	and classification of plant animal and bacterial viruses.	
2	Microbial Growth, and Nutrition: Microbial growth. Bacterial generation	8
	time. Monoauxic, Diauxic and synchronized growth curves. Factors	
	affecting microbial growth. Principles of microbial nutrition-	
	Chemoautotrophs, chemo-heterotrophs, photoautotrophs and photo-	
	heterotrophs. Types of growth media, pure culture methods. Culture	
	maintenance and preservation	
3	Pathogens. Medically important bacteria. Retroviruses, Viroids, Prions	8
	and emerging viruses such as HIV, Avian and swine flu viruses. Medically	

School of Basic and Applied Sciences Central University of Punjab, Bathinda

	important fungi and protozoans		
	Beneficial applications of microbes: Human Microflora, Pre and		
	Probiotics, Industrially important microbes		
4	Control of Microorganism: Control of Microorganism by physical and	7	
	chemical agents. Narrow and broad spectrum antibiotics, Mode of action of		
	Antimicrobial agents. Antibiotic resistance mechanisms.		
Sugge	ested Reading		
1.	Madigan, M.T., Martinko, J.M., Bender, K., and Buckley, D. (2011) Brock Biology of		
	Microorganisms, 13th Ed., Pearson Education, USA		
2.	Tauro, P., Kapoor, K.K. and Yadav, K.S. (1996). Introduction to Microbiology, New Age		
	Pub., New Delhi		
3.	Pelczar, M.J. et al. (2001), Microbiology- Concepts and Applications, International Ed.		
	McGraw Hill Publication, New York		
4.	Black, J.G. (2012), <i>Microbiology: Principles and Explorations</i> , 8 Sons, USA.		
5.	Willey, J.M., Sherwood, L., and Woolverton, C. (2013) Prescott's Microbiology 9th		
	Revised Edition, McGraw Hill Higher Education, New York		
6.	Pommerville, J.C. (2009) Alcamo's Fundamentals of Microbiology, Jones a	and Bartlett	
	Publishers.		
7.	Tortora, G.J., Funke, B.R., Case, C.L. (2012) Microbiology -An Introduction	n, Pearson	
	education Pvt. Ltd. Singapore.		

List of Value Added Courses

The list of Value added courses has been provided to choose any two courses in a programme

Si No.	Name of Course
1.	Ethics for Science
2.	Professional Ethics
3.	Academic Writing
4.	Value Education
5.	Stress Management
6.	Personality Development through Life Skills
7.	Physical & Mental Well Being
8.	Pedagogical Studies
9.	Data Analysis using spread sheet
10.	Soft Skill Training
11.	Leadership
12.	Personal Management
13.	Wealth Management
14.	Reasoning Ability
15.	MS office Specialist
16.	Practical Taxation
17.	Ethical Issues & Legal Awareness
18.	Disaster Management
19.	Nutrition and Specialty Foods
20.	Shorthand & Typing
21.	SPSS

School of Basic and Applied Sciences Central University of Punjab, Bathinda

Semester – III					
Course Code	Course Title	L (hr)	T (hr)	P (hr)	Cr
	Core Courses				
LBC.551	Metabolism-II	3	-	-	3
LBC.552	Clinical and Nutritional Biochemistry	3	-	-	3
LBC.553	Animal Physiology	3	-	-	3
LBC. 554	Biochemistry Practical-II (Practical)	-	-	6	3
	Discipline Elective (opt any one)				
LMS.560	Principles of Evolutionary and Developmental Biology	3	1	-	4
LBC.561	Cell Culture Techniques	3	1	-	4
	Skill Based				
LBC.543	Seminar-I	-	-	-	1
LBC.599	Project	-	-	12	6
	Total Credits				23

L: Lectures; T: Tutorial; P: Practical; Cr: Credits

Instructional Designs/ Mode of classroom Transaction:

- 1) Lecture
- 2) Problem solving
- 3) Experimentation
- 4) Tutorial
- 5) Problem solving
- 6) Seminars
- 7) Case Study

School of Basic and Applied Sciences Central University of Punjab, Bathinda

Core Courses

LBC.551: Metabolism-II

Learning Objective: This course is designed to cover the advanced aspects of biochemistry and biological molecules, including their biosynthesis and mechanisms by which they facilitate biochemical reactions.

Unit	Syllabus	Lectures		
1.	Lipids: Introduction, hydrolysis of tri-acylglycerols, α -, β -, ω - oxidation of fatty acids. Oxidation of a odd numbered fatty acids fato of propionate role of	12		
	carnitine, degradation of complex lipids. Fatty acid biosynthesis, Acetyl CoA carboxylase, fatty acid synthase, ACP structure and function.			
2.	Lipid biosynthesis, biosynthetic pathway for tri-acylglycerols, phosphoglycerides,	12		
	sphingomyelin and prostaglandins. Metabolism of cholesterol and its regulation.			
	Energetics of fatty acid cycle.			
3.	Amino Acids: General reactions of amino acid metabolism - Transamination,	12		
	decarboxylation, oxidative & non-oxidative deamination of amino acids. Special			
	metabolism of methionine, histidine, phenylalanine, tyrosine, tryptophan, lysine,			
	valine, leucine, isoleucine and polyamines. Urea cycle and its regulation.			
4.	Nucleic Acids: Biosynthesis and degradation of purine and pyrimidine	12		
	nucleotides and its regulation. Purine salvage pathway. Role of ribonucleotide			
	reductase. Biosynthesis of deoxyribonucleotides and polynucleotides including			
	inhibitors of nucleic acid biosynthesis.			
Sugge	sted Reading:			
1. Cam	pbell, MK and Farrell, SO. (2012) <i>Biochemistry</i> , 7th ed. Brooks/Cole Pub Co.			
2. Davidson, VL and Sittman, DB (1999) <i>Biochemistry</i> NMS, 4th ed. Lippincott. Willams and Wilkins.				
3. Voet	3. Voet, D and Voet JG (2011) <i>Biochemistry</i> , 4 th ed. Wiley			
4. Kuchel, Philip W., et al. (1988) Schaum's outline of theory and problems of biochemistry. 2 nd ed.				
McGrav	McGraw-Hill.			

5. Rodwell V, Bender D, Botham KM, Kennelly PJ and Weil PA (2015) *Harper's Biochemistry*. 30th ed. McGraw Hill.

6. Nelson DL and Cox MM (2004) Lehninger's Principles of Biochemistry, 4th ed. WH Freeman.

7. Berg JM, Tymoczko JL, Stryer L, Gregory J, Jr. Gatto (2010) *Biochemistry*, WH Freeman, 7th ed.

LBC . 552: Nutritional and Clinical Biochemistry

Learning Objective: This course aims to provide detailed knowledge regarding the biological basis of nutrition and the mechanisms by which diet and its components can influence health. The students will also learn the general principles clinical biochemistry and understand the biochemical changes in metabolism that leads to diverse clinical diseases.

Unit	Syllabus	Lectures
1.	Nutrition and Nutraceuticals:	12
	Diets and dietary standards, Basal metabolic rate (BMR); Anthropometric measurements and obesity. Assessment of nutritional status and Recommended Daily allowances.	
	Properties, Structure and Functions of Various Nutraceuticals; Nutraceutical	

School of Basic and Applied Sciences Central University of Punjab, Bathinda

	remedies for common disorders; Nutraceutical rich supplements; Probiotics and Prebiotics as nutraceuticals.		
2.	Disorders of Carbohydrate and Lipid Metabolism:	12	
	Diabetes mellitus. Insulin and glucose secretion, glucose and galactose tolerance		
	tests, glycogen storage diseases.		
	Plasma lipoproteins (VLDL, IDL, LDL and IDL), Cholesterol, Triglycerides &		
	Phospholipids in health and disease, Apo-lipoproteins, Atherosclerosis.		
3.	Other metabolic disorders	12	
	Jaundice, Fatty liver, Normal and abnormal functions of liver and kidney, Inulin		
	and urea clearance. Electrolytes and acid-base balance, Uremia, Hyperuricemia,		
	Porphyria, Factors affecting nitrogen balance. Albinism, Sickle cell anemia,		
	Thalassemia.		
4.	Blood Clotting and Diagnostic Enzymes	12	
	Blood Clotting, Disturbances in blood clotting mechanisms, Haemorrhagic		
	disorders, Haemophilia, von Willebrand's disease, Purpura, Rendu-Osler-Werber		
	disease, Thromboticthrombocytopenic purpura, Disseminated intravascular		
	coagulation, acquired prothrombin complex disorders, Circulating anticoagulants		
	Enzymes in health and diseases, Enzymes as diagnostic markers		
Sugge	sted Reading:		
1. Gav	w, A, Murphy MJ, Cowan RA, O'Reilly D, Stewart M, and Shepherd J (200	4) Clinical	
Bioche	mistry: An Illustrated Colour Text (Paperback) 3rd Ed. Publisher: Churchill Livingston	e.	
2. Luxt	on, R (2008) Clinical Biochemistry. 2 nd Ed. Scion Publishing Ltd.		
3. Guy	ton, AC and Hall, JE (2010) A text book of Medical Physiology, 12" Ed. Publisher: Sa	lunders.	
4. Mah	eshwari, N (2008) Clinical Biochemistry. Publisher: JPB.		
5. Gra	5. Gradwohl RBH (1970) Clinical Laboratory Methods and Diagnosis: A textbook on laboratory		
proced	procedures and their interpretations, Mosby publishers.		
6. Hen	6. Henry, Bernard J et al. (2002), Clinical diagnosis & Management by laboratory methods. W.B.		
Saunders, New York			
M D B L Publications New Delbi			
W.D.D.I. Fublications, New Denni 8 Coleman W.B. and Tsongalis, G. I. (2009) Molecular Pathology: The Molecular Basis of Human			
Diseas	8. Coleman, W. B. and Tsongalis, G. J. (2009). Molecular Pathology. The Molecular Basis of Human		
9 Nus	sbaum, R.L., McInnes, R. Mc., Willard, H.F. (2009). <i>Genetics in Medicine</i> , Elsevier In	C.,	
Philad	elphia, 10, Read A and Donnai D (2007), New Clinical Genetics, Scion Publis	shina Lmt.	
Oxford	shire, UK.	5,	
11. Pa	tch, H. S. C. (2009). Genetics for the Health Sciences. Scion Publishing Ltd., UK.		
12. Mil	unsky, A., Milunsky, J. (2009). Genetic Disorders and the Fetus: Diagnosis, Preventio	on and	
Treatm	nent, 6th Edition. Wiley-Blackwell publishers.		
13. Toi	m B, (1998) Nutritional Biochemistry, 2 nd ed, Academic Press, London.		
14. Ste	even HW, Steven J, et al. (2002). Health promotion and disease prevention in clinical	practice,	
2 nd ed.	J.B.Lippin Cott & Co.		
15. Ra	mesh, C.G. (2010). Nutraceuticals: Efficacy, Safety and Toxicity, Academic Press Inc		
16. De	ebasis B., Harry G.P, and Anand S. (2015). Nutraceuticals and Functional Foods in H	luman	
Health	and Disease Preventio. CRC Press.		

LBC.553: Animal Physiology

Learning Objective: This course is designed to provide students with an understanding of the function and regulation of physiological systems which will include neural & hormonal homeostatic

School of Basic and Applied Sciences Central University of Punjab, Bathinda

control mechanisms, as well as study of the musculoskeletal, circulatory, respiratory, digestive, urinary, immune, reproductive, and endocrine organ systems.

Uni	t Syllabus	Lectures	
1.	Blood and Circulation: Blood corpuscles, haemopoiesis and formed elements,	12	
	plasma function, blood volume, blood volume regulation, blood groups,		
	haemoglobin, immunity, haemostasis		
	Cardiovascular System: Comparative anatomy of heart structure, myogenic		
	heart, specialized tissue, ECG – its principle and significance, cardiac cycle, heart		
	as a pump, blood pressure, neural and chemical regulation of all above		
	Respiratory System: - Comparison of respiration in different species, anatomical		
	considerations, transport of gases, exchange of gases, waste elimination, neural		
	and chemical regulation of respiration.		
2.	Digestive System: Digestion, absorption, energy balance, BMR.	12	
	Excretory System: Comparative physiology of excretion, kidney, urine formation,		
	urine concentration, waste elimination, micturition, regulation of water balance,		
	blood volume, blood pressure, electrolyte balance, acid-base balance.		
	Muscle Physiology: Types of muscles, Properties; Contractile force; Motor Unit.		
	Skeletal, cardiac and smooth Muscle Mechanics & Metabolism.Control of Body		
	Movement. Cartilage, tendons, ligaments, joints, and other connective tissues.		
3.	Nervous System: Neurons, action potential, gross neuroanatomy of the brain	10	
	and spinal cord, central and peripheral nervous system, neural control of muscle		
	tone and posture Sense organs: Vision, hearing and tactile response		
4.	Endocrinology: Endocrine glands, basic mechanism of hormone action,	12	
	hormones and diseases Thermoregulation - Comfort zone, body temperature –		
	physical, chemical, neural regulation, acclimatization.		
	Reproductive System: Males and female reproductive system. Gametogenesis,		
	fertilization and early development. Physiology of ageing: Changes in various		
	systems and mechanisms involved, factors affecting ageing. Apoptosis.		
Sug	ggested Reading:		
1.	Brody, I. (1998). Nutritional Biochemistry. Academic Press, USA.	ana laa	
Ζ.	Devin, 1.W. (2005). Textbook of Biochemistry with clinical correlations. John whey $\&$ S	ons inc.	
3.	Guyton, (2007), Textbook of medical physiology, 11 th Edition, Elsevier India Pvt, Ltd, N	ew Delhi.	
4.	Hill, R.W., Wyse, G. A. and Anderson, M. (2008). Animal physiology. Sinauer Associates Inc.		
	USA.		
5.	Murray, R.K. (2009). Harper's illustrated biochemistry. Jaypee Publishers, New Delhi, I	ndia.	
6.	Iyagi, P. (2009). A textbook of Animal Physiology.Dominant Publishers and distributors	s, New	
	Delhi, India.		

LBC.553: Biochemistry Practical-II (Practical)

Learning Objective: The students will learn and perform experiments pertaining to the theory papers of clinical and nutritional biochemistry. The students will be taught to make links between

School of Basic and Applied Sciences Central University of Punjab, Bathinda

observations, scientific ideas and how to calculate various vital human parameters.

- 1. Estimation of cholesterol in biological tissue
- 2. Estimation of Ribonucleic acid
- 3. Estimation of Deoxyribonucleic acid
- 4. Estimation and Separation of serum/plasma Proteins in Blood
- 5. Estimation of blood/serum glucose
- 6. Estimation of Serum Total Cholesterol
- 7. Tests for Proteins, Glucose, Ketone Bodies, Bilirubin & Urobilinogen in Urine
- 8. Estimation of Urea in Blood (Serum)
- 9. Determination of Uric Acid in Serum
- 10. Estimation of Serum Bilirubin
- 11. Oral Glucose Tolerance Test
- Practicals may be added/modified from time to time depending on available faculties/facilities.

Discipline Elective Courses

LMS.560: Principles of Evolutionary and Developmental Biology

Learning Objective: In this course the students will learn the about the origin of life and development of plants and animals, with a particular emphasis on the molecular genetic basis for developmental events. The course will focus on developmental phenomena studied in several of the most prominently utilized model organisms.

Unit	Syllabus	Lectures
1.	Origin of Life: Lamarckism, Darwinism, Concepts of variation,	15
	adaptation, struggle, Mendelism, Spontaneity of mutations, Theories of	
	phyletic gradualism vs. punctuated equilibria, Modern evolutionary	
	synthesis. Origin of basic biological molecules, Abiotic synthesis of	
	organic monomers and polymers, Concept of Oparin and Haldane model,	
	Origin of eukaryotic cells, Evolution of unicellular eukaryotes, Anaerobic	
	metabolism, Photosynthesis and aerobic metabolism.	
2.	Basic Concepts of Development: Totipotency, Commitment,	15
	Specification, Induction, Competence, Determination and Differentiation,	
	Morphogenetic gradients, Cell fate and cell lineages, Stem cells, Genomic	
	equivalence and cytoplasmic determinants. Model organisms in	
	Developmental biology (Drosophila, C. elegans, Xenopus)	
3.	Gametogenesis, Fertilization and Cell Death: Production of gametes,	15
	Cell surface molecules in sperm-egg recognition in animals; Embryo-sac	
	development and double fertilization in plants, Zygote formation,	
	cleavage, blastula formation, embryonic fields, gastrulation and formation	
	of germ layers in animals. Embryogenesis and establishment of symmetry	
	in plants, Seed formation.	

School of Basic and Applied Sciences Central University of Punjab, Bathinda

4.	Molecular Genetic Basis for Developmental Events: Genetic and	15
	molecular control of development of limbs, Gastrointestinal system and	
	cardiovascular system. Cell-Cell Communication and Signaling.	
	Apoptosis, Caspases, Importance of programmed cell death (PCD) in	
	animal/plant development. Medical implications of developmental biology: genetic errors/ teratogenesis/ stem cell therapy.	
	general energy second contract of pro-	

Suggested Reading:

- 1. Darwin, C.R. (1911). On the origin of species by means of natural Selection, or preservation of favoured races in the struggle for life. Hurst Publishers, UK.
- 2. Dawkins, R. (1996). *The Blind Watchmaker*, W.W. Norton & Company Jones and Bartlett Publishers.
- 3. Futuyma, D.J. (2009). *Evolution*. Sinauer Associates Inc. USA.
- 4. Hake, S. and Wilt, F. (2003). *Principles of Developmental Biology*. W.W. Norton & Company, New York, USA.
- 5. Hall, B.K. and Hallgrimsson, B. (2007). *Strickberger's Evolution.* Jones and Bartlett Publishers, India.
- 6. Lewin, R. (2004). *Human Evolution An Illustrated Introduction*. Wiley-Blackwell, USA.
- 7. Scott, F. and Gilbert, S.F. (2010). *Developmental Biology*. Sinauer Associates, Inc. USA.
- 8. Slack, J.M.W. (2005). *Essential Developmental Biology*, Wiley-Blackwell, USA.
- 9. Green, D. R. & Reed J. C. (2010). *Apoptosis: Physiology and Pathology*. Cambridge press, UK.
- 10. Sadler, T.W., Tosney, K., Chescheir, N.C., Imseis, H., Leland, J. and Sadler-Redmond, S., L. (2011). *Langman's Medical Embryology (Longmans Medical Embryology)*. Lippincott Williams and Wilkins.
- 11. Schaefer, B.D. (2013). *Medical Genetics: An integrated Approach.* McGraw Hill Education, New Delhi.

LBC. 561. Cell Culture Techniques

Learning Objectives: At the end of the course the student will have the background of animal tissue culture essential for understanding their applications in other fields and planning projects in the field of biotechnology encompassing cell culture based system. Students should be able to design and execute cell culture based experiments in a research setting as well as industrial setting with a thorough clarity in the basic principles.

Unit	Syllabus	Lectures
-	Introduction to animal cell cultivation: Basics terms and definitions, historical background, Importance of animal cell culture technology, laboratory facilities-design, equipments and safety parameters, waste disposal in a cell culture set-up. Aseptic techniques for animal cell cultivation.	12
Π	Cell culture technology: Basic requirement for growing animal cells - Cell culture reagents, media, media supplements, media preparation and	18

School of Basic and Applied Sciences Central University of Punjab, Bathinda

	sterilization, Defined-Undefined media, Complete-Incomplete media, Importance of Serum and Serum free Media, culture conditions. Maintenance of cell culture: Culturing, sub-culturing, passaging, cell	
	metabolism during culture,	
	animal cells, anchorage-dependence, monolayer and suspension culture.	
	normal cells and transformed cells. Scaling up- techniques for cells in	
	suspension and in monolayer	
	Cell line banking and cell culture databases. Contamination check and	
	prevention: bacterial, yeast, fungal, mycoplasma, viral testing	
	Studying biological system using cell culture techniques: Functional	15
	assays based on cell culture: Cell morphology, Quantitation, Growth	
	Death: senescence, apoptosis and necrosis. Cell proliferation. Cell viability	
	measurements, Karyotype analysis, FISH.	
	Immunolabeling of cells to study molecular expression pattern–Microscopy,	
	Transient stable cell line generation and Gene Silencing	
IV	Cell and Tissue culture- Trends and Breakthroughs: Hybridoma	15
	technology for monoclonal antibody production, production of genetically-	
	engineered cells and their applications, use of cell cultures in the production	
	current stem cell therapies, stem cells in heart, brain and spinal cord	
	regeneration and regenerative medicine Regenerative Medicine: Tissue	
	engineering, Three-dimensional culture, multicellular tumour spheroids	
	(MCTS)-mono and co-cultures, re-aggregate organ cultures, drug testing in-	
Sugge	sted Readings:	
1.	Michael Butler, "Animal Cell Culture and Technology", BIOS Scientific Publishe	ers
2.	John R.W. Masters, "Animal Cell Culture-A Practical Approach", Oxford Unive	ersity
З	Press R Jan Freshney "Culture of Animal Cells: A Manual of Basic Technique and	
5.	Specialized Applications".	
4.	Trent, R. J. (2010). Molecular Medicine, Fourth Edition: Genomics to Personal	ized
	Healthcare, Academic Press.	

LBC. 543: Seminar I

Learning Objective: To read the recent scientific articles and give presentation on a recent topic of biochemistry to further improve student scientific writing and presentation skills. The students select an advanced topic in biochemistry and related fields; they prepare a presentation of approximately 20 minutes based on recent literature available and recent advances on that topic. The students will prepare a report.

Evaluation Criterion: Students are evaluated based on presentation and written report.

School of Basic and Applied Sciences Central University of Punjab, Bathinda

LBC.599: Project

Course Objective: The objective of project would be to ensure that the student learns the nuances of the scientific writing. Herein the student will have to write her/ his synopsis including an extensive review of literature with simultaneous identification of scientifically sound (and achievable) objectives backed by a comprehensive and detailed methodology. The student can also write a review for the project work whose outline should be presented as part of synopsis.

Evaluation Criteria

The evaluation will be on the basis of satisfactory and non-satisfactory where satisfactory will be based on the performance of the student as Excellent, Very good, Good, Average whereas student will be given non-satisfactory when their performance is below average. The criteria for the performance will be:

- 1. Attendance and punctuality
- 3. Extensive review of literature
- 5. Management of time and resources
- 2. Regular discussion with supervisor
- 4. Interest in the field
- 6. Synopsis presentation

School of Basic and Applied Sciences Central University of Punjab, Bathinda

	Semester – IV				
Course Code	Course Title	L (hr)	T (hr)	P (hr)	Cr
	Elective Foundation				
XXX	Choose from value based courses/ MOOCs	1	-	-	1
	Core Courses				
LPS.524	Plant Physiology	3	1	-	4
LBC.572	Secondary Metabolites and Metabolic Engineering	2	-	-	2
	Discipline Elective (opt any one)				
LBC.580	Genetic Engineering	3	1	-	4
LMS. 581	Clinical Diagnostics	3	1	-	4
	Compulsory Foundation (Discipline Enrichment Courses)				
LBC.573	Recent Advances in Life Sciences-I	-	2	-	2
LBC.574	Recent Advances in Life Sciences-II	-	2	-	2
	Skill Based Courses				
LBC.544	Seminar-II	-	-	-	1
LBC.599	Project	-	-	12	6
	Total Credits				22

L: Lectures; T: Tutorial; P: Practical; Cr: Credits

Instructional Designs/ Mode of classroom Transaction:

- 1. Lecture
- 2. Project Method
- 3. Problem solving
- 4. Experimentation
- 5. Seminar
- 6. Tutorial

School of Basic and Applied Sciences Central University of Punjab, Bathinda

Core Courses

LPS.524: Plant Physiology

Learning Objective: This course will provide insights into physiological processes in plants. Further, the students will understand various mechanisms used by plants to survive in abiotic and biotic stress conditions.

Unit	Syllabus	Lectures
1.	Photosynthesis, Respiration and Photorespiration: Light harvesting	16
	complexes, Mechanisms of electron transport, Photoprotective mechanisms, CO ₂	
	fixation, C3, C4 and CAM pathways. Citric acid cycle. Plant mitochondrial	
	electron transport and ATP synthesis, Alternate oxidase, Photo-respiratory	
	pathway.	
	Nitrogen Metabolism: Nitrate and ammonium assimilation, Amino acid	
	biosynthesis.	
2.	Water Relations, Solute Transport and Photoassimilate Translocation:	16
	Properties of water, Properties of solutions, Cell water potential, Soil -plant	
	-atmosphere continuum. Uptake, transport and translocation of water, ions,	
	Solutes and macromolecules from soil, Through cells, Across membranes,	
	Through xylem and phloem, Transpiration, Mechanisms of loading and unloading	
	of photoassimilates, WUE.	
3.	Phytohormones: Biosynthesis, storage, breakdown and transport, physiological	16
	effects and mechanisms of action. Sensory Photobiology: Structure, function	
	Photoperiodism and Biological clocks.	
4.	Secondary Metabolism: Biosynthesis of terpenes, Phenols and nitrogenous	14
	compounds and their roles. Growth and development, Programmed cell death:	
	Apoptosis, Caspases, Importance and role of PCD in plant development.	
Sugge	ested Reading:	
1.	Buchanan, B.B. and Gruissem, W. (2010). Biochemistry and Molecular Biology of	Plants. IK
	International Pvt. Ltd. New Delhi, India.	
2.	Campbell, M.K. and Farrell, S.O. (2007). <i>Biochemistry</i> . Thomson Brooks/cole, USA.	
3.	Dey, P.M. and Harborne, J.B. (2000). <i>Plant Biochemistry</i> . Academic Press, UK.	
4.	Goodwin, T.W. and Mercer, E.I. (2003). Introduction to Plant Biochemistry. CBS Po	ublishers &
	Distributors, New Delhi, India.	
5.	Ross and Salisbury. (2009). Plant Physiology. Cengage Learning (Thompson), I	New Delhi,
	India.	
7.	Taiz, L. and Zeiger, E. (2010). <i>Plant Physiology</i> . Sinauer Associates Inc., USA.	
8.	Taiz, L., Zeiger, E. Mollar, I. M. and Murphy, A. (2015). Plant Physiology and Develop	o <i>ment</i> 6th
	edition. Sinauer Associates Inc., USA.	

LBC.572: Secondary Metabolites and Metabolic Engineering

Learning Objective: The course is designed to make the students understand principles of secondary metabolite synthesis in plants and microbes. The course will build knowledge about

School of Basic and Applied Sciences Central University of Punjab, Bathinda

application of dynamic models to metabolism and analysis of metabolic pathway for its utilization in product formation.

Unit	Syllabus	Lectures
1.	Secondary Metabolites in Plants: Terpenoids-Mevalonate pathway and	9
	Methylerythritol phosphate pathway, Monoterpenes (C10), Sesquiterpenes	
	(C15), Triterpenes (C30), Diterpenes (C20), Tetraterpenes (C40) and	
	Polyterpenoids; Phenolics-shikimic acid pathway and Malonic acis Pathway,	
	Simple Phenolics (trans-cinnamic acid, p-coumaric acid and their	
	derivatives), Complex Phenolics (Lignin), Flavonoids, Tanins (Condensed	
	tannin and Hydrolyzable tannins); Nitrogen containing compounds- Alkaloids	
	(Cocaine, Nicotine, Morphine, Caffeine, pyrrolizidine alkaloids), Cyanogenic	
	Glycosides: Glucosinolates.	
2.	Secondary Metabolites in Microbes: Organic Metabolites-Ethanol,	8
	Acetone: Citric acid, Acetic acid, Lactic acid, Gluconic acid, Itaconic acid,	
	Amino acids; Enzymes- Amylases, Glucose Isomerase, L Asparaginase,	
	Proteases, Renin, Penicillin acvlases, Lactases, Pectinases, Lipases;	
	Vitamins- Vitamin B12. Riboflavin. B carotene: Antibiotics: beta-Lactam	
	antibiotics: Amino acid and peptide antibiotics: Carbohydrate antibiotics:	
	Tetracycline and antracyclines; Nucleoside antibiotics; Aromatic antibiotics.	
3.	Metabolic Engineering of Plants & Micro-organisms: Introduction to	9
	metabolic engineering: Concept and importance of metabolic engineering,	
	basic enzyme kinetics, metabolite regulation of metabolic pathways, basic	
	metabolic control analysis (MCA), metabolic fluxes and basic flux balance	
	analysis (FBA), Applications of MCA and FBA for the improvement of	
	microbial strains and plant cells fermentation processes.	
4.	Tutorials & Case Studies: Practical for the use of software tools for	6
	construction and simulation of small metabolic pathways, Case study using	
	one genome scale metabolic model for the strain improvement for the	
	production of organic metabolites- Ethanol, Acetone; Citric acid, Acetic acid,	
	Lactic acid (Introduction only).	
Sugg	ested Reading:	
1.	Taiz, L. and Zeiger, E. (2010). Plant Physiology. Sinauer Associates Inc., USA	
2.	Dey, P.M. and Harborne, J.B. (2000). Plant Biochemistry. Academic Press, UK	ζ.
3.	Goodwin, T.W. and Mercer, E.I. (2003). Introduction to Plant Biochemi	istry. CBS
	Publishers & Distributors, New Delhi, India.	
4.	Crueger, W. and Crueger, A. (1990). Biotechnology. A Textbook of	Industrial
	Microbiology. Sinauer Associates., USA.	
5.	Demain, A. and Solomon, N.A. (1950). Biology of Industrial microorganisi	ms. Menlo
	Park, Calif.: Benjamin/Cummings Pub. Co., Advanced Book Program, CA.	
6.	David Fell (1997) Understanding the Control of Metabolism, Portland Press, Lo	ondon.
7.	Segel, I.H. (1993) Enzyme Kinetics: Behavior and Analysis of Rapid Equili	brium and
	Steady-State Enzyme Systems. ISBN: 978-0-471-30309-1, 992 page	es, Wiley
	Publication.	
8.	Stephanopoulos. (1998). Metabolic Engineering: Principles & Methodologies, F	Published
	by <u>cbspd</u>	
9.	Sang Yup Lee, E. Terry Papoutsakis. (1999). Metabolic Engineering, CRC Pre	SS
10	. Orth, J.D., Thiele, I., and Palsson, B.Ø. What is flux balance analysis?. Nature	
	Biotechnology, 28 : 245-248 (2010).	

School of Basic and Applied Sciences Central University of Punjab, Bathinda

11. Edwards, J.S., Covert, M., and Palsson, B.Ø. Metabolic Modeling of Microbes: the Flux Balance Approach. Environmental Microbiology, **4(3)**: pp. 133-140 (2002).

Discipline Elective Courses

Г

LBC.580: Genetic Engineering

Learning Objective: The aim of this course is to acquaint the students to versatile tools and techniques employed in genetic engineering. A sound knowledge on methodological repertoire allows students to innovatively apply these in basic and applied fields of biological research

Unit	Syllabus	Lectures
1.	Tools of Genetic Engineering: Restriction enzymes, Enzymes in genetic	15
	engineering, Cloning vectors, Expression vectors & their biology (Plasmid	
	Vectors, Vectors based on Lambda Bacteriophage, Cosmids, M13	
	Vectors, Expression Vectors, Vectors for Cloning Large DNA Molecules),	
	Transformation and Selection, genomic and cDNA library construction &	
	DNA-sequencing techniques, Site-directed mutagenesis	
2.	Gene Cloning and Expression in Microbial and Eukaryotic Systems:	15
	Cloning in E. coli, in Gram-positive bacteria, in Streptomycetes, in	
	Saccharomyces Cerevisiae and Pichia pastoris, in Insect Cells, in	
	Mammalian Cells expression system, Fusion proteins, Transcriptional &	
	Translational Fusions, Adding Tags and Signals	
3.	Applications of Recombinant DNA Technology: Vaccines (subunit-,	15
	peptide-, attenuated-, DNA- and vector-based), Metabolic Engineering and	
	Protein Engineering: Enzymes, Antibiotics, Therapies for Genetic	
	Diseases, Bioremediation	
4.	Genetic Manipulation and functional assessment: Model organisms,	15
	Genetically modified plants and animals, Creating Transgenics,	
	Knockouts, Knockdowns, RNAi technology, CRISPR technology.	
	Generation of Transient and stable cell lines. Functional genomics:	
	Forward and reverse Genetics	
Suggested Reading:		
1. Glick BJ, Pasternak JJ, Patten CL. (2010) Molecular Biotechnology: Principles and		
Applications of Recombinant DNA. 4 th edition, American Society for Microbiology		/
2. Kurnaz IA. (2015) <i>Techniques in Genetic Engineering</i> .1 st edition, CRC Press.		th
3. Primrose SB, Twyman R. (2006) Principles of Gene Manipulation and Genomics. 7" edition, Wiley Blackwell		
Wiley-Diackweii.		

4. Green MR, Sambrook J. (2012). *Molecular cloning: A laboratory manual*. 4th edition, Cold Spring Harbor Laboratory Press, New York.

LMS. 581. Clinical Diagnostics

Learning Objective: The objective this course is to introduce the students to diverse methods of clinically diagnosing human diseases which will further help them to use these techniques various applied fields of biological research

School of Basic and Applied Sciences Central University of Punjab, Bathinda

Unit	Syllabus	Lectures
1	Introduction to Clinical Diagnostics: Philosophy and general approach to	12
	clinical specimens, Sample collection (Blood, urine, spinal fluid, synovial	
	fluid, amniotic fluid) - method of collection, preservation, transport and	
	processing of samples. Diagnosis – disease altered state, prognosis, direct	
	and indirect, concept of antigen and antibody. Principles of validation of	
	diagnostic assays for infectious diseases, Validation and quality control of	
	polymerase chain reaction methods used for the diagnosis of infectious	
	diseases.	
2	Protein based Clinical Diagnostics: Antigen – Antibody Interaction, Lattice Theory, Precipitin Curve, Simple Immunodiffusion (Radial Immunodiffusion – Qualitative, Quantitative); Double Diffusion (Mechanism of Reaction of Identity, Partial Identity, and Non-Identity); Rocket Electrophoresis, Immunoelectrophoresis; Western Blot, Immunofluorescence, Radioimmunossay; ELISA – types and assay development; Agglutination – Antibody titer, Prozone Phenomenon, Direct and Indirect Agglutination, ABO Blood typing, Agglutination Inhibition; Advantages and limitation with respect to clinical diagnosis and research usage. Microparticle based antigen - Antibody interaction techniques. Monoclonal antibody – production, applications, novel approaches in detection, Humanized monoclonal antibodies	18
3	DNA based Clinical Diagnostics: Nucleic acid extraction from clinical	15
	samples, quantization, digestion, hybridization, Amplification by PCR (Inverse PCR, Multiplex PCR, Nested PCR, Alu-PCR, Hot-start, <i>In situ</i> PCR, Long-PCR, PCR-ELISA, iPCR, applications and limitations) DNA fingerprinting and polymorphism studies (SNP, RAPD, RFLP, VNTR, Mutation detection etc). Emphasis on interpretation of results and quality control. High-throughput Technologies and Pathological Diagnostics: Microarray (protein, DNA), Real-Time PCR, Reporter assays. Biosensors –	
	types applications examples (ducose etc) telemedicine Eluorescence	
	based techniques (FISH analysis, Flow cvtometry, Fluorescent Microscopy)	
	Mass spectrometry, Histopathology, Immunohistochemistry and Real-Time	
	PCR. Microbiological Diagnosis and Hematology. Enzyme and hormone	
	based diagnostic techniques.	
4	Case Studies: Diagnosis of Infectious Diseases – some specific	15
	examples.Diagnosis of bacterial infection caused by <i>Coliforms, Salmonella, Shigella, Vibrio, and Mycobacterium tuberculosis.</i> Diagnosis of fungal infections. Dermetophytoses, Candidiosis and Aspergillosis. Diagnosis of DNA and RNA viruses. Pox viruses, Adenoviruses, Rhabdo Viruses, Hepatitis Viruses and	
	Retroviruses.Diagnosis of Protozoan diseases: Amoebiosis, Malaria, Trypnosomiosis, Leishmaniasis, Filariasis and Schistosomiasis.Medical	

School of Basic and Applied Sciences Central University of Punjab, Bathinda

Genetics: Organization of human genome, Human Genome Project, Identifying human disease genes. Genetic Counselling. Genetic disorders: Sickle cell anaemia, Duchenne muscular Dystrophy, Retinoblastoma, Cystic Fibrosis and Sex –linked inherited disorders. Neonatal and Prenatal disease diagnostics.

Suggested Reading:

1. Burtis, Carl A, Ashwood, Edward R, Bruns, David E., "*Tietz textbook of Clinical Chemistry & Molecular Diagnostics*" USA: Saunders, 2006.

2. World Organization for Animal Health: "*Manual of Diagnostic Tests and Vaccines for Terrestrial Animals*" Volumes I & II, 6th Edition, 2010.

3. Rao, Juluri R, Fleming, Colin C., Moore, John E., "*Molecular Diagnostics: current technology and Applications*", Horizon Bioscience, U. K., 2006.

4. Goldsby, Richard A., Kuby, Janis, "*Immunology*", New York: WH Freeman and Company, 2003.

5. Mahon, Connie R.; Lehman, Donald C.; Manuselis, George "*Textbook of Diagnostic Microbiology*". USA: Saunders, 2007.

Compulsory Foundation (Discipline Enrichment Courses)

LBC. 573. Recent Advances in Life Sciences-I

Learning Objectives: The course deals with the specific content for the national level tests conducted by UGC, CSIR and other agencies. The course is divided into two parts and in Part-I the students will be practicing and revising the topics related to cell biology, genetics, biochemistry and microbiology. The students will be given exercises, mock tests and practice test from the previous year's examinations.

Unit	Syllabus	Lectures
	Cell Biology: Molecules and their Interaction Relevant to Biology, Cellular	7
	Organization, Cell Communication, cell Signaling and Cell Cycle.	
II	Biochemistry: Structure and functions of carbohydrates, lipids, amino acids, proteins, nucleic acids and vitamins. Bioenergetics and thermodynamics. Metabolism of carbohydrates, lipids, amino acids and nucleotides.	8
	Genetics: Nucleic acids: types and Functions. Genetic code, Mendelian and non-Mendelian inheritance. Genetic mapping. Recombination. Microbial Genetics.	8
IV	Microbiology: Scope and history of Microbiology, classification of Bacteria, Fungi, Protozoa, Algae, and viruses. Microbial growth. Ecology and applied microbiology.	7

The topics covered will be revised from time to time as per the revised NET syllabus.

School of Basic and Applied Sciences Central University of Punjab, Bathinda

LBC. 574. Recent Advances in Life Sciences-II

Learning Outcomes: The course deals with the specific content for the national level tests conducted by UGC, CSIR and other agencies. The course is divided into two parts and in Part-II the students will be practicing and revising the topics related to molecular biology, immunology, animal physiology, developmental biology and plant physiology. The students will be given exercises, mock tests and practice test from the previous year's examinations.

Unit	Syllabus	Lectures
I	Evolution and Developmental Biology: Lamarckism, Darwinism,	7
	Concepts of variation. Molecular divergence and phylogeny.	
	Gametogenesis, Fertilization and Cell Death, Molecular Genetic Basis for	
	Developmental Events and Basic Concepts of Development	
	Animal Physiology: Muscle Physiology: Types of muscles, Properties;	8
Ш	Cardiovascular system, Nutrition and digestive system. Excretory System,	
	Nervous system and Endocrine system. Comparative physiology.	
	Immunology: Molecular Mechanisms of Antibody Diversity and Cellular	
	Immunity. Hybridoma technology and vaccine development associated	
	challenges for chronic and infectious diseases.	
	Plant Physiology: Photosynthesis, Respiration and Photorespiration:	7
	Light harvesting complexes, Mechanisms of electron transport,	
	Photoprotective mechanisms. Photo-respiratory pathways.	
	Phytohormones. Stress Physiology: Mechanisms of resistance to biotic	
	stress and tolerance to abiotic stress.	
IV	Molecular Biology and Techniques in Biology: DNA replication and	8
	repair. Transcription and translation. Gene regulation. Molecular	
	techniques. Concepts of bioinformatics. Genomics, proteomics and	
	metabolomics.	

The topics covered will be revised from time to time as per the revised NET syllabus.

LBC.544: Seminar II

Learning Objective: To read the recent scientific articles and give presentation on a recent topic of biochemistry to further improve student scientific writing and presentation skills.

The students select an advanced topic in biochemistry and related fields; they prepare a presentation of approximately 20 minutes based on recent literature available and recent advances on that topic. The students will prepare a report.

Evaluation Criterion: Students are evaluated based on presentation and written report.

LBC.599: Project

Course Objective: The objective would be to ensure that the student learns the nuances of the scientific research and writing. Herein, the student will carry out the experiments to achieve the

School of Basic and Applied Sciences Central University of Punjab, Bathinda

objectives as mentioned in the synopsis. The data collected as a result of experiments must be meticulously analysed in light of established scientific knowledge to arrive at cogent conclusions. The student can also write a review for the project work in place of experimental work.

Evaluation Criteria

The evaluation will be on the basis of satisfactory and non-satisfactory where satisfactory will be based on the performance of the student as Excellent, Very good, Good, Average whereas student will be given non-satisfactory when their performance is below average. The criteria for the performance will be:

- 1. Attendance and punctuality
- 2. Regular discussion with supervisor
- 3. Extensive review of literature
- 4. Interest in the field
- 5. Management of time and resources
- 6. Final presentation

List of Value Added Courses

The list of Value added courses has been provided to choose any two courses in a programme

S. No.	Name of Course
1.	Ethics for Science
2.	Professional Ethics
3.	Academic Writing
4.	Value Education
5.	Stress Management
6.	Personality Development through Life Skills
7.	Physical & Mental Well Being
8.	Pedagogical Studies
9.	Data Analysis using spread sheet
10.	Soft Skill Training
11.	Leadership
12.	Personal Management
13.	Wealth Management
14.	Reasoning Ability
15.	MS office Specialist
16.	Practical Taxation
17.	Ethical Issues & Legal Awareness
18.	Disaster Management
19.	Nutrition and Specialty Foods
20.	Shorthand & Typing
21.	SPSS