Department of Animal Sciences

Program: M.Sc. in Life Sciences (Specialization: Animal Sciences) Academic Session: 2018 - 19

Course	Course Title	Туре	L (hr)	T (hr)	P (hr)	Cr
Code						
	Core Courses*			1	1	
LAS.507	Animal Classification and Diversity	CC	3	-	-	3
LAS.508	Biochemistry	CC	3	-	-	3
LAS.510	Ecology and Evolution	СС	3	-	-	3
LAS.511	Cell Biology	CC	3	-	-	3
LAS.520	Lab Course (Practical) – I	CC	-	-	10	5
	Discipline Elective Courses					
	(Opt any one)					
LAS.513	Techniques in Life Sciences	DE	2	-	-	2
LAS.514	Animal Cell Culture and Applications	DE	2	-	-	2
	Inter-Disciplinary (ID) Course			1	I	
LAS.515	Fundamentals of Cell Biology	ID	2	-	-	2
	Compulsory Foundation [#]			1	I	
CST.501	Computer Applications for Sciences	CF	2	1	-	3
			1		1	
	Total Credits / Marks					24

Semester – I

*Note: In case of technical difficulty to offer the compulsory foundation courses at the department/university level, the student may opt through MOOCs (online) from the SWAYAM portal.

L: Lectures; T: Tutorial; P: Practical; Cr: Credits; * Compulsory Courses

Examination Pattern

- A: <u>Continuous Assessment:</u> [25 Marks]
 - i. Surprise Test (minimum three) Based on Objective Type Tests (10 Marks)
 - ii. Term paper (10 Marks)
 - iii. Assignment(s) (5 Marks)
- B: <u>Pre-Scheduled Mid Semester Test-1:</u> Based on Subjective Type Test [25 Marks]
- C: <u>Pre-Scheduled Mid Semester Test-2:</u> Based on Subjective Type Test [25Marks]
- D: End-Term Exam (Final): Based on Objective Type Tests [25 Marks]
- E: Practical: (Annexure A)

Semester - I

Core Courses:

LAS.507: Animal Classification and Diversity

Learning Objectives: Students with varied graduation subjects take up our program. Hence, the course is designed to bring them on a common platform to provide a common understanding of diversity of life forms with an emphasis on animals. The three main objectives of the course are:

- To learn how organisms are classified according to their physical characteristics and evolutionary relationships
- To familiarize with animal diversity and classification
- To appreciate the vastness of biodiversity and understand its importance

Unit	Syllabus	Lectures	
1.	Systematics: Binomial nomenclature; three domain classification;	10	
	phylogenetic tree construction; applications of phylogeny; cladistics:		
	monophyletic, paraphyletic and polyphyletic groups; shared and derived		
	characters; homoplasy; parsimony analysis; molecular clocks		
2.	Domain Eukarya: Algae; Fungi; phylogeny of living animals; overview	12	
	of non-chordates: phylums porifera, cnidarian, Platyhelminthes,		
	Rotifera, Lopophorates, Mollusca, Annelida, nematode, Arthropoda,		
	Echinodermata; overview of chordates:cephalochordate, urochordata,		
	Myxini, Petromyzontida, Chondrichtnyes, Actinopterygii, Actinistia,		
2	Animal models: Animal models of disease & research: Dresenhila C	10	
5.	alagans Zebrafish Mice and Human: Common parasites and pathogens	10	
	of humans, domestic animals, crons and fungi		
4	Biodiversity and Conservation: Importance of biodiversity: types &	13	
	patterns of biodiversity: measurement of biodiversity: Simpson'		
	diversity index and Shannon-Weiner index; ecosystem services and		
	value; loss of biodiversity; ex-situ and in -situ conservation strategies of		
	biodiversity: national parks, wild life sanctuaries, biodiversity hotspots		
	and world heritage sites; rare and endangered species; impact of climate		
	change on biodiversity		
Sugge	sted Reading:		
1	Damron W S (2012) Introduction to Animal Science Prentice Hall 5th Edition	n	
2.	2. Lisa AU et al (2016) Campbell Biology Pearson publishers 11th edition		
3.	Primack, R. B. (2014). Essentials of Conservation Biology. Sinauer Associates Inc. 6 th		
_ /	edition	,	
4.	Modern textbook of zoology: vertebrates R.L. Kothpal		
5.	The Tree of Life_by Pablo Vargas. Sinauer Associates, Oxford University Press		

- 6. Kapoor, V.C., 1983. Theory and practice of animal taxonomy. (Oxford & IBH Publ. Co.)
- 7. Mayr, E. & Ashlock, P.D., 1991. Principles of Systematic Zoology. (McGraw Hill International Edition)

LAS.508: Biochemistry

Learning Objective: The course is designed to teach fundamentals and basics of biochemistry and to prepare the students for advanced aspects of biochemistry such as nutrition and metabolism associated with human physiology.

Unit	Syllabus	Lectures
1.	Principles of Biophysical Chemistry: pH, buffers, reaction kinetics,	10
	thermodynamics, colligative properties, chemical bonds and stabilizing	
	interactions: van der Waals, electrostatic, hydrogen bonding & hydrophobic	
	interactions.	
2.	Bioenergetics: Concept of free energy, standard free energy, determination	12
	of ΔG for a reaction. Relationship between equilibrium constant and standard	
	free energy change, biological standard state & standard free energy change	
	in coupled reactions. Biological oxidation-reduction reactions, redox	
	potentials, relation between standard reduction potentials & free energy	
	change (derivations and numericals included). High energy phosphate	
	compounds - introduction, phosphate group transfer, free energy of	
	hydrolysis of ATP and sugar phosphates along with reasons for high ΔG ,	
	energy change.	
3.	Composition, Structure and Function of Biomolecules: Classification,	11
	structure, general properties and functions of polysaccharides and complex	
	carbohydrates; amino sugars, proteoglycans and glycoproteins. Lipids -	
	Classification, structure, properties and functions of fatty acids, essential	
	fatty acids, fats, phospholipids, sphingolipids, cerebrocides, steroids, bile	
	acids, prostaglandins, lipoamino acids, lipoproteins, proteolipids,	
	phosphatidopeptides, lipopolysaccharides. Proteins - Peptide synthesis:	
	chemical and Merrifield synthesis. Primary (peptide conformation, N- and C-	
	terminal, peptide cleavage), Secondary (a-helix, \beta-sheet, random coil,	
	Ramachandran plot), Tertiary and Quaternary structures of proteins.	
4.	Enzymology: Historical perspective, general characteristics, nomenclature,	12
	IUB enzyme classification (specific examples), measurement and expression	
	of enzyme activity, enzyme assay, factors influencing enzyme activity,	
	active site, Michaelis-Menten equation and its importance. Definitions of IU,	
	Katal, enzyme turnover and specific activity. Methods for isolation,	
	purification and characterization of enzymes, tests for homogeneity of	
	enzyme preparation. Clinically important enzymes.	

1. Berg, J. M., Tymoczko, J. L. and Stryer, L. (2010). Biochemistry. W.H. Freeman & Company.

USA.

- 2. Mathews, C. K., Van Holde, K. E. and Ahern, K. G. (2000). Biochemistry. Oxford University Press Inc. New York.
- 3. Nelson, D. and Cox, M. M. (2008). Lehninger Principles of Biochemistry. BI publications Pvt. Ltd. Chennai, India.
- 4. Shukla, A. N. (2009). Elements of Enzymology. Discovery Publishing. New Delhi, India.
- 5. Voet, D. and Voet, J. G. (2008). Principles of Biochemistry. CBS Publishers & Distributors. New Delhi, India.

LAS.510: Ecology and Evolution

3 Credits

Learning objective: Through this course the students will gain insight into the living organism in relation to its environment. The two main objectives of the course are:

- To understand the interdependency of ecology and evolution and their importance in all the domains of life
- To realize that ecology and evolutionary biology play a crucial role in facing the grand challenges of our time

Unit	Syllabus	Lectures
1.	Introduction to Ecology: Habitat and niche, adaptation, ecosystem, biotic and abiotic factors, food chain, food webs, trophic level, Biogeography – classification and zones	8
2.	Ecosystem Dynamics: Concept and components of ecosystem, ecological pyramids, energy flows in different ecosystems, energy models, ecosystem productivity. Types and characteristics of ecosystem-terrestrial (forest, desert, grassland) and aquatic (pond, marine), wetlands, estuaries, natural and manmade ecosystems, forest types in India. Biogeochemical cycles – cycling of water, nutrients.	12
3.	Population and Community Ecology: Population characteristics, population interaction; prey-predator relationships; Theories of population growth, population dynamics, regulation. Concept of metapopulation, demes and dispersal, niche- concept and types, keystone species, flagship species and umbrella species; dominant species, ecotone, edge effect, ecotypes, plant indicators; ecological succession – types and mechanism, theory of island	12
4.	Evolution: Darwin & the origin of species, Lamarckism, Micro- evolution: concept of natural selection, genetic drift (founder and bottle neck effect) and gene flow, Hardy-Weinberg law, directional, disruptive, stabilizing and sexual selection. Speciation: biological species concept, allopatric, sympatric and parapatric speciation, concept of hybrid zone. Macro-evolution: origin of life on earth, Oparin and Haldane hypothesis, Urey-Miller experiments, geological timescale and events, continental drift, mass extinctions, evolutionary trends	13

Suggested Reading:

- 1. Urry, L. A. et al. (2016). Campbell Biology. Pearson publishers, 11th edition.
- 2. Smith, T. M. and Smith, R. L. (2012). Elements of Ecology. Benjamin Cummings Publishing Company, 8th edition.
- 3. Begon, M., Howarth, R. W. and Townsend, C. R. (2014). Essentials of Ecology. Wiley
- 4. Publishers, 4th edition.
- 5. Odum, E. and Barrett, G. W. (2004). Fundamentals of Ecology. Cengage Learning, 5th edition.
- 6. Prasanthrajan, M and Mahendran, P. P. (2008). A Text Book on Ecology and Environmental Science
- 7. Evolution: Making sense of life by Carl Zimmer

LAS.511: Cell Biology

3 Credits

Learning Objective: Students will understand the structure and basic components of prokaryotic and eukaryotic cells, especially macromolecules, membranes, and organelles and their related functions.

Unit	Syllabus	Lectures
1.	Cell: Evolution of the cell, molecules to cell, prokaryotes and eukaryotes.	10
	Membrane Structure and Function: Models of membrane structure,	l
	membrane proteins, membrane carbohydrates, membrane transport of small	l
	molecules, membrane transport of macromolecules and particles.	1
2.	Structural Organization and Function of Intracellular Organelles:	12
	Lysosomes, ribosomes, peroxisomes, golgi apparatus, endoplasmic reticulum	l
	and its types, mitochondria and chloroplast, Structure of mitochondria and	l
	nucleus, oxidation of glucose and fatty acids, electron transport chain (ETC):	l
	oxidative phosphorylation, chloroplast and photosynthesis.	1
3.	The Cytoskeleton: The nature of cytoskeleton, intermediate filaments,	13
	microtubules, actin filaments, cilia and centrioles, organization of the	l
	cytoskeleton.	1
	Cell Communication: Cell adhesions, cell junctions and the extra cellular	1
	matrix, cell-cell adhesion and communication, cell matrix adhesion, collagen	1
	the fibrous protein of the matrix, non-collagen component of the extra	1
	cellular matrix.	1
4.	Cell Division and Cell Cycle: Mitosis and meiosis, their regulation, steps in	10
	cell cycle, regulation and control of cell cycle events.	1

Suggested Reading:

1. Alberts, B., Bray, D., Lews, J., Raff, M., Roberts, K. and Watson, J. D. (2010). Molecular

Biology of the Cell. Garland publishers, Oxford.

- 2. Celis, J. E. (2006). Cell Biology: A Laboratory Handbook, Vol 1, 2, 3. Academic Press, UK.
- 3. Gupta, P. K. (2008). Cytology, Genetics and Evolution. Rastogi publications, Meerut, India.
- 4. Karp, G. (2010). Cell and Molecular Biology: Concepts and Experiments. John Wiley & Sons. Inc. New Delhi, India.

Discipline Elective Courses:

LAS.513: Techniques in Life Sciences

2 Credits

Learning Objective: The goal of this course for students is to acquire the necessary theoretical knowledge of various laboratory and analytical instruments.

Unit	Syllabus	Lectures	
1.	Spectroscopy and Chromatography Techniques: Colorimetry, UV-Vis,	8	
	fluorimeter, FTIR, mass, IR, NMR, and X-ray. Principle, procedure and		
	applications of thin layer chromatography (TLC), gel filtration, FPLC and		
	ion exchange, affinity chromatography, GC, GLC and HPLC.		
2.	Microscopy: Light microscopy, phase contrast microscopy, fluorescent	7	
	microscopy, confocal microscope, scanning electron microscopy		
	(SEM/FESEM), transmission electron microscopy (TEM), atomic force		
	microscopy.		
3.	Basic Molecular Biology Techniques: Isolation, purification and analysis	8	
	of protein and nucleic acids. Electrophoresis: Principle of gel		
	electrophoresis, polyacrylamide gel electrophoresis (PAGE and SDS-		
	PAGE), agarose gel electrophoresis and 2-Dimensional gel electrophoresis.		
	Polymerase chain reaction (PCR): Principle, types and applications. Blotting		
	techniques: Southern, Northern, Western analysis, In situ hybridization etc.		
4.	Advanced Immunological and Cell Culture Techniques: Perfusion,	7	
	Fixation, different techniques of sectioning, MTT assay,		
	Electrophysiological techniques like Patch clamp immunochemical		
	techniques, immunocytochemistry, immunofluorescence, radioimmunoassay		
	(RIA), Different enzyme linked immunosorbent assay (ELISA),		
	immunoprecipitation, flow cytometry. Cell and tissue culture techniques:		
	Primary and secondary cultures.		

Suggested Reading:

1. Brown, T. A. (2010). Gene Cloning and DNA Analysis: An Introduction. 6th Edition, Wiley-Blackwell Publisher, New York.

- Goldsby, R. A., Kindt, T. J. and Osborne, B. A. (2008). Kuby Immunology. 6th Edition, W. H. Freeman & Company, San Francisco.
- 3. Gupta, P. K. (2005). Elements of Biotechnology. Rastogi Publications, Meerut.
- 4. Kothari, C. R. (2008.) Research Methodology. New Age International (P) Ltd., New Delhi
- 5. Lewin, B. (2010). Genes X, CBS Publishers & Distributors. New Delhi.
- 6. Nelson, D. and Cox, M. M. (2009). Lehninger Principles of Biochemistry. W.H. Freeman and Company, New York.
- 7. Primrose. S. B. and Twyman, R. (2006). Principles of Gene Manipulation and Genomics. Blackwell Publishing Professional, U.K.
- 8. Sambrook, J. (2006). The Condensed Protocols from Molecular Cloning: A Laboratory Manual. Cshl Press. New York.
- 9. Sambrook, J. and Russell, D. W. (2000). Molecular Cloning: A Laboratory Manual (3 Vol-set). 3rd Edition, CSHL Press, New York.
- 10. Sawhney, S. K. and Singh, R. (2005). Introductory Practical Biochemistry. Narosa Publishing House, New Delhi.
- 11. Wilson, K. and Walker, J. (2006). Principles and Techniques of Biochemistry and Molecular biology. 6th Edition, Cambridge University Press India Pvt. Ltd., New Delhi.

LAS.514: Animal Cell Culture and Applications

2 Credits

Learning Objective: The goal of this course is to provide the necessary theoretical knowledge on animals cells for *in vitro* studies, maintenance of animal cells *in vitro*, manipulation of animal cells *in vitro*, and application of molecular techniques to *in vitro* situations.

Unit	Syllabus	Lectures
1.	Introduction to Animal Cell Culture: Historical background. Good	8
	Laboratory Practices (GLP), sterilization methods and techniques.	
	Biology of animal cell and cell-cell interactions, growth environment	
	and culture requirement. Primary culture, subculture, cell line, cell	
	strain, cell clone. Importance of serum and serum-free media, culturing	
	and sub-culturing of animal cells, in vitro transfection of animal cells,	
	cell-based assays, cell differentiation and movement, animal cell culture	
	facility.	
2.	Cell Culture Types and Characterization: Primary cell culture, tissue	7
	culture, organ culture, cell line immortalization, cell line preservation &	
	characterization, karyotype analysis, cellular markers, commercial cell	
	lines, and insect cell culture.	
3.	Applications of Animal Cell Culture: Cancer Research, vaccine	8
	manufacture, gene and stem cell therapy, production of recombinant	
	proteins, IVF Technology, toxicology studies.	
4.	Translational Research Applications: Animal cells as the applicable	7

	products (recombinants, hybridomas, stem cells and transplants). Focus	
	on Rodent and murine models in scientific research associated with	
	cancer and neurodegenerative diseases.	
Sugges	ted Reading:	

- 1. Freshney, R. I. (2010). Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. Wiley-Blackwell, 2010. 6th Edition.
- 2. Davis, J. M. (2008). Basic Cell Culture. Oxford University Press. New Delhi.
- 3. Davis, J. M. (2011). Animal Cell Culture. John Willy and Sons Ltd. USA.
- 4. Freshney R. I. (2005). Culture of Animal Cells. John Willy and Sons Ltd. USA.
- 5. Butler, M. (2004). Animal Cell Culture and Technology. Taylor and Francis. New York, USA.
- 6. Verma, A. S. and Singh, A. (2014). Animal Biotechnology. Academic Press, Elsevier, USA.
- 7. Cartwright, E. J. (2009). Transgenesis Techniques. Humana Press. London, UK.
- 8. McArthur, R. A. and Borsini, F. (2008). Animal and Translational Models for CNS Drug Discovery. Elsevier. London, UK.
- 9. Research Journals and Review Articles as suitable and applicable.

Inter Disciplinary Course:

LAS.515: Fundamentals of Cell Biology

2 Credits

Learning Objective: This is an interdisciplinary course to acquaint the students of different streams with a very basic knowledge and understanding of the basic unit of life: the cell, its structure, composition and function.

Unit	Syllabus	Lectures	
	Basic unit of Life: Life at the cellular and molecular level. Introduction to		
1.	the topics include cellular energetics, membrane phenomena, genetics, and	8	
	molecular biology.		
2.	Introduction to the Cell: The evolution of the cell, from molecules to first		
	cell, from prokaryotes to eukaryotes, prokaryotic and eukaryotic genomes,	7	
	from single cell to multicellular organism.		
3.	Membrane Structure and Function: Biomembrane at a glance,		
	membrane models: structure and composition, and membrane transport.	8	
4.	Structural Organization of Intracellular Organelles: Introduction of		
	subcellular organelles: lysosomes, ribosomes, peroxisomes, golgi	7	
	apparatus, endoplasmic reticulum, nucleus, mitochondria, and chloroplast.		

Suggested Reading:

- 1. Gupta, P. K. (2005). Cell and Molecular Biology. Rastogi publications, Meerut, India.
- 2. James, D. W., Baker, T.A., Bell, S.P., Gann, A. (2009). Molecular Biology of the Gene. Benjamin Cummings, USA.
- 3. Johnson, A., Lewis, J., Raff, M. (2007). Molecular Biology of the Cell. Garland Science, USA.
- 4. Lodish, H., Berk, A., Chris, A. K. and Krieger, M. (2008). Molecular Cell Biology. W.H. Freeman, USA. Alberts, B., Bray, D., Lews, J., Raff, M., Roberts, K. and Watson, J.D. (2010).
- 5. Molecular Biology of the Cell. Garland publishers, Oxford.
- 6. Karp, G. (2010). Cell and Molecular Biology: Concepts and Experiments. John Wiley & Sons. Inc. New Delhi, India.

Compulsory Foundation Course:

CST.501: Computer Applications for Sciences

3 (2L + 1P) Credits

Learning Objective:

Upon successful completion of this course, the student will be able to:

- 1. Use different operating system and their tools easily.
- 2. Use word processing software, presentation software, spreadsheet software and latex.
- 3. Understand networking and internet concepts.
- 4. Use computers in every field like teaching, industry and research.

Unit	Syllabus	Lectures
1.	Computer Fundamentals: Introduction to Computer, Input devices,	8
	Output Devices, Memory (Primary and Secondary), Concept of Hardware	
	and Software, C.P.U., System bus, Motherboard, Ports and Interfaces,	
	Expansion Cards, Ribbon Cables, Memory Chips, Processors, Software:	
	Types of Software, Operating System, User Interface of popular Operating	
	System, Introduction to programming language, Types of Computer.	
2.	Computer Network: Introduction to Computer Network, Types of	7
	Network: LAN, WAN and MAN, Topologies of Network, Internet	

	concept, WWW.	
	Word Processing using MS Word: Text creation and Manipulation; Table handling; Spell check, Hyper-linking, Creating Table of Contents and table of figures, Creating and tracking comments, language setting and thesaurus, Header and Footer, Mail Merge, Different views, Creating equations, Page setting, Printing, Shortcut keys.	
3.	 Presentation Tool: Creating Presentations, Presentation views, Working on Slide Transition, Making Notes Pages and Handouts, Drawing and Working with Objects, Using Animations, Running and Controlling a Slide Show, Printing Presentations, Shortcut keys. Spread Sheet: Entering and editing data in cell, Basic formulas and functions, deleting or inserting cells, deleting or inserting rows and columns, printing of Spread Sheet, Shortcut keys. 	8
4.	Use of Computers in Education and Research: Data analysis tools, e- Library, Search engines related to research, Research paper editing tools like Latex.	7
Suggestee	d Reading:	
1. 2.	Sinha, P.K. Computer Fundamentals. BPB Publications. Goel, A., Ray, S. K. 2012. Computers: Basics and Applications. Pearson Education India.	
3. 	Microsoft Office Professional 2013 Step by Step https://ptgmedia.pearsoncmg.com/images/9780735669413/samplepages/978073566	94 13.pdf

LAS.520: Lab Course (Practical) – I

5 Credits

Learning Objectives: The lab course-I is designed to acquaint the students with a fundamental knowledge and understanding of the lab reagents preparation, biochemical estimation of biomolecules and techniques involved in biomolecule separation & study of cell structure and function.

- 1. Laboratory instrumentation
- 2. Preparation of Buffers and Solutions
- 3. Biochemical estimation and analysis of Proteins, Lipids and Carbohydrates
- 4. SDS-and native polyacrylamide gel electrophoresis
- 5. Gel filtration and Ion-exchange chromatography
- 6. Cell structure: Compound, Fluorescence, and Electron microscopy
- 7. Histochemistry: Fixation, Sectioning, Embedding, Processing and Staining
- 8. Immunocytochemistry
- 9. Identification of cell mitosis and meiosis stages
- 10. Specimen identification, DNA barcoding & Construction of phylogenetic trees

Note: *Practicals may be added / modified depending on the available faculties / facilities / latest advancements

Annexure – A

Examination Pattern

Practical: Lab course – I, II & III [100 Marks each]

i.	Day to day performance –	60 Marks
	a. Attendance –	10 Marks
	b. Continuous assessment -	30 Marks
	c. Lab Record -	10 Marks
	d. Overall performance -	10 Marks

ii. End-semester exam – 40 Marks

а.	Major Question -	20 Marks
b.	Minor Question -	10 Marks
с.	Viva-voce -	10 Marks

Updated on: 30-5-2018